47
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3 system

      , , , ,
      Applied Physics Letters
      AIP Publishing

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Lead-free piezoceramics.

          Lead has recently been expelled from many commercial applications and materials (for example, from solder, glass and pottery glaze) owing to concerns regarding its toxicity. Lead zirconium titanate (PZT) ceramics are high-performance piezoelectric materials, which are widely used in sensors, actuators and other electronic devices; they contain more than 60 weight per cent lead. Although there has been a concerted effort to develop lead-free piezoelectric ceramics, no effective alternative to PZT has yet been found. Here we report a lead-free piezoelectric ceramic with an electric-field-induced strain comparable to typical actuator-grade PZT. We achieved this through the combination of the discovery of a morphotropic phase boundary in an alkaline niobate-based perovskite solid solution, and the development of a processing route leading to highly textured polycrystals. The ceramic exhibits a piezoelectric constant d33 (the induced charge per unit force applied in the same direction) of above 300 picocoulombs per newton (pC N(-1)), and texturing the material leads to a peak d33 of 416 pC N(-1). The textured material also exhibits temperature-independent field-induced strain characteristics.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            (Bi1/2Na1/2)TiO3-BaTiO3System for Lead-Free Piezoelectric Ceramics

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching.

              Ferroelectric crystals are characterized by their asymmetric or polar structures. In an electric field, ions undergo asymmetric displacement and result in a small change in crystal dimension, which is proportional to the applied field. Such electric-field-induced strain (or piezoelectricity) has found extensive applications in actuators and sensors. However, the effect is generally very small and thus limits its usefulness. Here I show that with a different mechanism, an aged BaTiO(3) single crystal can generate a large recoverable nonlinear strain of 0.75% at a low field of 200 V mm(-1). At the same field this value is about 40 times higher than piezoelectric Pb(Zr, Ti)O(3) (PZT) ceramics and more than 10 times higher than the high-strain Pb(Zn(1/3)Nb(2/3))O(3)-PbTiO(3) (PZN-PT) single crystals. This large electro-strain stems from an unusual reversible domain switching (most importantly the switching of non-180 degrees domains) in which the restoring force is provided by a general symmetry-conforming property of point defects. This mechanism provides a general method to achieve large electro-strain effect in a wide range of ferroelectric systems and the effect may lead to novel applications in ultra-large stroke and nonlinear actuators.
                Bookmark

                Author and article information

                Journal
                Applied Physics Letters
                Appl. Phys. Lett.
                AIP Publishing
                0003-6951
                1077-3118
                September 10 2007
                September 10 2007
                : 91
                : 11
                : 112906
                Article
                10.1063/1.2783200
                d5659768-e34b-4996-909d-bec9ef6bff82
                © 2007
                History

                Comments

                Comment on this article