38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Local and Landscape Factors Determining Occurrence of Phyllostomid Bats in Tropical Secondary Forests

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Neotropical forests are being increasingly replaced by a mosaic of patches of different successional stages, agricultural fields and pasture lands. Consequently, the identification of factors shaping the performance of taxa in anthropogenic landscapes is gaining importance, especially for taxa playing critical roles in ecosystem functioning. As phyllostomid bats provide important ecological services through seed dispersal, pollination and control of animal populations, in this study we assessed the relationships between phyllostomid occurrence and the variation in local and landscape level habitat attributes caused by disturbance. We mist-netted phyllostomids in 12 sites representing 4 successional stages of a tropical dry forest (initial, early, intermediate and late). We also quantitatively characterized the habitat attributes at the local (vegetation structure complexity) and the landscape level (forest cover, area and diversity of patches). Two focal scales were considered for landscape characterization: 500 and 1000 m. During 142 sampling nights, we captured 606 individuals representing 15 species and 4 broad guilds. Variation in phyllostomid assemblages, ensembles and populations was associated with variation in local and landscape habitat attributes, and this association was scale-dependent. Specifically, we found a marked guild-specific response, where the abundance of nectarivores tended to be negatively associated with the mean area of dry forest patches, while the abundance of frugivores was positively associated with the percentage of riparian forest. These results are explained by the prevalence of chiropterophilic species in the dry forest and of chiropterochorous species in the riparian forest. Our results indicate that different vegetation classes, as well as a multi-spatial scale approach must be considered for evaluating bat response to variation in landscape attributes. Moreover, for the long-term conservation of phyllostomids in anthropogenic landscapes, we must realize that the management of the habitat at the landscape level is as important as the conservation of particular forest fragments.

          Related collections

          Most cited references258

          • Record: found
          • Abstract: found
          • Article: not found

          Farming and the fate of wild nature.

          World food demand is expected to more than double by 2050. Decisions about how to meet this challenge will have profound effects on wild species and habitats. We show that farming is already the greatest extinction threat to birds (the best known taxon), and its adverse impacts look set to increase, especially in developing countries. Two competing solutions have been proposed: wildlife-friendly farming (which boosts densities of wild populations on farmland but may decrease agricultural yields) and land sparing (which minimizes demand for farmland by increasing yield). We present a model that identifies how to resolve the trade-off between these approaches. This shows that the best type of farming for species persistence depends on the demand for agricultural products and on how the population densities of different species on farmland change with agricultural yield. Empirical data on such density-yield functions are sparse, but evidence from a range of taxa in developing countries suggests that high-yield farming may allow more species to persist.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Measuring Biological Diversity

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The role of frugivorous bats in tropical forest succession.

              Discussion of successional change has traditionally focused on plants. The role of animals in producing and responding to successional change has received far less attention. Dispersal of plant propagules by animals is a fundamental part of successional change in the tropics. Here we review the role played by frugivorous bats in successional change in tropical forests. We explore the similarities and differences of this ecological service provided by New and Old World seed-dispersing bats and conclude with a discussion of their current economic and conservation implications. Our review suggests that frugivorous New World phyllostomid bats play a more important role in early plant succession than their Old World pteropodid counterparts. We propose that phyllostomid bats have shared a long evolutionary history with small-seeded early successional shrubs and treelets while pteropodid bats are principally dispersers of the seeds of later successional canopy fruits. When species of figs (Ficus) are involved in the early stages of primary succession (e.g. in the river meander system in Amazonia and on Krakatau, Indonesia), both groups of bats are important contributors of propagules. Because they disperse and sometimes pollinate canopy trees, pteropodid bats have a considerable impact on the economic value of Old World tropical forests; phyllostomid bats appear to make a more modest direct contribution to the economic value of New World tropical forests. Nonetheless, because they critically influence forest regeneration, phyllostomid bats make an important indirect contribution to the economic value of these forests. Overall, fruit-eating bats play important roles in forest regeneration throughout the tropics, making their conservation highly desirable.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                18 April 2012
                : 7
                : 4
                : e35228
                Affiliations
                [1 ]Centro de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México, Morelia, México
                [2 ]Earth and Atmospheric Sciences Department, University of Alberta, Edmonton, Canada
                [3 ]Department of Biological and Health Sciences, Texas A & M University, Kingsville, Texas, United States of America
                [4 ]Centro de Estudios Botánicos y Agroforestales, Instituto Venezolano de Investigaciones Científicas, Maracaibo, Venezuela
                University of Western Australia, Australia
                Author notes

                Conceived and designed the experiments: LAC GASA KES. Performed the experiments: LAC MYAA. Analyzed the data: LAC GASA CAPQ MQ. Contributed reagents/materials/analysis tools: GASA KES MQ. Wrote the paper: LAC MYAA KES. Revised for intellectual content: GASA MQ CAPQ.

                Article
                PONE-D-11-23164
                10.1371/journal.pone.0035228
                3329449
                22529994
                284989b2-ae98-4cb2-a95b-a7a1a8e92026
                Avila-Cabadilla et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 15 November 2011
                : 13 March 2012
                Page count
                Pages: 13
                Categories
                Research Article
                Biology
                Ecology
                Community Ecology
                Community Structure
                Ecological Metrics
                Species Diversity
                Species Richness
                Behavioral Ecology
                Biodiversity
                Conservation Science
                Population Ecology
                Spatial and Landscape Ecology
                Zoology
                Mammalogy

                Uncategorized
                Uncategorized

                Comments

                Comment on this article