46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Half a century of genetic interaction between farmed and wild Atlantic salmon: Status of knowledge and unanswered questions

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references266

          • Record: found
          • Abstract: not found
          • Article: not found

          Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Between a rock and a hard place: evaluating the relative risks of inbreeding and outbreeding for conservation and management.

            As populations become increasingly fragmented, managers are often faced with the dilemma that intentional hybridization might save a population from inbreeding depression but it might also induce outbreeding depression. While empirical evidence for inbreeding depression is vastly greater than that for outbreeding depression, the available data suggest that risks of outbreeding, particularly in the second generation, are on par with the risks of inbreeding. Predicting the relative risks in any particular situation is complicated by variation among taxa, characters being measured, level of divergence between hybridizing populations, mating history, environmental conditions and the potential for inbreeding and outbreeding effects to be occurring simultaneously. Further work on consequences of interpopulation hybridization is sorely needed with particular emphasis on the taxonomic scope, the duration of fitness problems and the joint effects of inbreeding and outbreeding. Meanwhile, managers can minimize the risks of both inbreeding and outbreeding by using intentional hybridization only for populations clearly suffering from inbreeding depression, maximizing the genetic and adaptive similarity between populations, and testing the effects of hybridization for at least two generations whenever possible.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sex-dependent dominance at a single locus maintains variation in age at maturity in salmon.

              Males and females share many traits that have a common genetic basis; however, selection on these traits often differs between the sexes, leading to sexual conflict. Under such sexual antagonism, theory predicts the evolution of genetic architectures that resolve this sexual conflict. Yet, despite intense theoretical and empirical interest, the specific loci underlying sexually antagonistic phenotypes have rarely been identified, limiting our understanding of how sexual conflict impacts genome evolution and the maintenance of genetic diversity. Here we identify a large effect locus controlling age at maturity in Atlantic salmon (Salmo salar), an important fitness trait in which selection favours earlier maturation in males than females, and show it is a clear example of sex-dependent dominance that reduces intralocus sexual conflict and maintains adaptive variation in wild populations. Using high-density single nucleotide polymorphism data across 57 wild populations and whole genome re-sequencing, we find that the vestigial-like family member 3 gene (VGLL3) exhibits sex-dependent dominance in salmon, promoting earlier and later maturation in males and females, respectively. VGLL3, an adiposity regulator associated with size and age at maturity in humans, explained 39% of phenotypic variation, an unexpectedly large proportion for what is usually considered a highly polygenic trait. Such large effects are predicted under balancing selection from either sexually antagonistic or spatially varying selection. Our results provide the first empirical example of dominance reversal allowing greater optimization of phenotypes within each sex, contributing to the resolution of sexual conflict in a major and widespread evolutionary trade-off between age and size at maturity. They also provide key empirical evidence for how variation in reproductive strategies can be maintained over large geographical scales. We anticipate these findings will have a substantial impact on population management in a range of harvested species where trends towards earlier maturation have been observed.
                Bookmark

                Author and article information

                Journal
                Fish and Fisheries
                Fish Fish
                Wiley-Blackwell
                14672960
                September 2017
                September 2017
                : 18
                : 5
                : 890-927
                Article
                10.1111/faf.12214
                73fd0c4c-c885-4eee-ac92-19d7e01ef8c6
                © 2017

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article