Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Ins and Outs of the TCA Cycle: The Central Role of Anaplerosis

      1 , 1 , 2 , 1 , 3
      Annual Review of Nutrition
      Annual Reviews

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The reactions of the tricarboxylic acid (TCA) cycle allow the controlled combustion of fat and carbohydrate. In principle, TCA cycle intermediates are regenerated on every turn and can facilitate the oxidation of an infinite number of nutrient molecules. However, TCA cycle intermediates can be lost to cataplerotic pathways that provide precursors for biosynthesis, and they must be replaced by anaplerotic pathways that regenerate these intermediates. Together, anaplerosis and cataplerosis help regulate rates of biosynthesis by dictating precursor supply, and they play underappreciated roles in catabolism and cellular energy status. They facilitate recycling pathways and nitrogen trafficking necessary for catabolism, and they influence redox state and oxidative capacity by altering TCA cycle intermediate concentrations. These functions vary widely by tissue and play emerging roles in disease. This article reviews the roles of anaplerosis and cataplerosis in various tissues and discusses how they alter carbon transitions, and highlights their contribution to mechanisms of disease.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: not found

          The biology of cancer: metabolic reprogramming fuels cell growth and proliferation.

          Cell proliferation requires nutrients, energy, and biosynthetic activity to duplicate all macromolecular components during each passage through the cell cycle. It is therefore not surprising that metabolic activities in proliferating cells are fundamentally different from those in nonproliferating cells. This review examines the idea that several core fluxes, including aerobic glycolysis, de novo lipid biosynthesis, and glutamine-dependent anaplerosis, form a stereotyped platform supporting proliferation of diverse cell types. We also consider regulation of these fluxes by cellular mediators of signal transduction and gene expression, including the phosphatidylinositol 3-kinase (PI3K)/Akt/mTOR system, hypoxia-inducible factor 1 (HIF-1), and Myc, during physiologic cell proliferation and tumorigenesis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Glucose feeds the TCA cycle via circulating lactate

            Mammalian tissues are fuelled by circulating nutrients, including glucose, amino acids, and various intermediary metabolites. Under aerobic conditions, glucose is generally assumed to be burned fully by tissues via the tricarboxylic acid cycle (TCA cycle) to carbon dioxide. Alternatively, glucose can be catabolized anaerobically via glycolysis to lactate, which is itself also a potential nutrient for tissues and tumours. The quantitative relevance of circulating lactate or other metabolic intermediates as fuels remains unclear. Here we systematically examine the fluxes of circulating metabolites in mice, and find that lactate can be a primary source of carbon for the TCA cycle and thus of energy. Intravenous infusions of 13C-labelled nutrients reveal that, on a molar basis, the circulatory turnover flux of lactate is the highest of all metabolites and exceeds that of glucose by 1.1-fold in fed mice and 2.5-fold in fasting mice; lactate is made primarily from glucose but also from other sources. In both fed and fasted mice, 13C-lactate extensively labels TCA cycle intermediates in all tissues. Quantitative analysis reveals that during the fasted state, the contribution of glucose to tissue TCA metabolism is primarily indirect (via circulating lactate) in all tissues except the brain. In genetically engineered lung and pancreatic cancer tumours in fasted mice, the contribution of circulating lactate to TCA cycle intermediates exceeds that of glucose, with glutamine making a larger contribution than lactate in pancreatic cancer. Thus, glycolysis and the TCA cycle are uncoupled at the level of lactate, which is a primary circulating TCA substrate in most tissues and tumours.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease

              Nonalcoholic fatty liver disease (NAFLD) has emerged as the most common chronic liver disease worldwide and is strongly associated with the presence of oxidative stress. Disturbances in lipid metabolism lead to hepatic lipid accumulation, which affects different reactive oxygen species (ROS) generators, including mitochondria, endoplasmic reticulum, and NADPH oxidase. Mitochondrial function adapts to NAFLD mainly through the downregulation of the electron transport chain (ETC) and the preserved or enhanced capacity of mitochondrial fatty acid oxidation, which stimulates ROS overproduction within different ETC components upstream of cytochrome c oxidase. However, non-ETC sources of ROS, in particular, fatty acid β-oxidation, appear to produce more ROS in hepatic metabolic diseases. Endoplasmic reticulum stress and NADPH oxidase alterations are also associated with NAFLD, but the degree of their contribution to oxidative stress in NAFLD remains unclear. Increased ROS generation induces changes in insulin sensitivity and in the expression and activity of key enzymes involved in lipid metabolism. Moreover, the interaction between redox signaling and innate immune signaling forms a complex network that regulates inflammatory responses. Based on the mechanistic view described above, this review summarizes the mechanisms that may account for the excessive production of ROS, the potential mechanistic roles of ROS that drive NAFLD progression, and therapeutic interventions that are related to oxidative stress.
                Bookmark

                Author and article information

                Journal
                Annual Review of Nutrition
                Annu. Rev. Nutr.
                Annual Reviews
                0199-9885
                1545-4312
                October 11 2021
                October 11 2021
                : 41
                : 1
                : 19-47
                Affiliations
                [1 ]Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA;
                [2 ]Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
                [3 ]Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
                Article
                10.1146/annurev-nutr-120420-025558
                27f016e8-e919-497d-929a-6f38e3440eb3
                © 2021
                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content270

                Cited by41

                Most referenced authors822