1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Water temperature governs organophosphate ester dynamics in the aquatic food chain of Poyang Lake

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Organophosphate esters (OPEs) are increasingly recognized as pervasive environmental contaminants, primarily from their extensive application in flame retardants and plasticizers. Despite their widespread presence, the intricacies of OPE bioaccumulation within aquatic ecosystems remain poorly understood, particularly the environmental determinants influencing their distribution and the bioaccumulation dynamics across aquatic food chains. Here we show that water temperature plays a crucial role in modulating the dispersion of OPE in the aquatic environment of Poyang Lake. We quantified OPE concentrations across various matrices, uncovering levels ranging from 0.198 to 912.622 ng L −1 in water, 0.013–493.36 ng per g dry weight (dw) in sediment, 0.026–41.92 ng per g wet weight (ww) in plankton, 0.13–2100.72 ng per g dw in benthic invertebrates, and 0.31–3956.49 ng per g dw in wild fish, highlighting a pronounced bioaccumulation gradient. Notably, the intestines emerged as the principal site for OPE absorption, displaying the highest concentrations among the seven tissues examined. Among the various OPEs, tris(chloroethyl) phosphate was distinguished by its significant bioaccumulation potential within the aquatic food web, suggesting a need for heightened scrutiny. The propensity for OPE accumulation was markedly higher in benthic invertebrates than wild fish, indicating a differential vulnerability within aquatic biota. This study lays a foundational basis for the risk assessment of OPEs as emerging contaminants and underscores the imperative to prioritize the examination of bioaccumulation effects, particularly in benthic invertebrates, to inform future environmental safeguarding strategies.

          Graphical abstract

          Highlights

          • Water temperature is the vital driver for OPEs distribution in Poyang Lake.

          • Fish intestines have high concentrations of OPEs as high as 6612.82 ng per g dw.

          • Benthic invertebrates showed stronger OPE bioaccumulation than wild fish.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: not found

          Phosphorus flame retardants: properties, production, environmental occurrence, toxicity and analysis.

          Since the ban on some brominated flame retardants (BFRs), phosphorus flame retardants (PFRs), which were responsible for 20% of the flame retardant (FR) consumption in 2006 in Europe, are often proposed as alternatives for BFRs. PFRs can be divided in three main groups, inorganic, organic and halogen containing PFRs. Most of the PFRs have a mechanism of action in the solid phase of burning materials (char formation), but some may also be active in the gas phase. Some PFRs are reactive FRs, which means they are chemically bound to a polymer, whereas others are additive and mixed into the polymer. The focus of this report is limited to the PFRs mentioned in the literature as potential substitutes for BFRs. The physico-chemical properties, applications and production volumes of PFRs are given. Non-halogenated PFRs are often used as plasticisers as well. Limited information is available on the occurrence of PFRs in the environment. For triphenyl phosphate (TPhP), tricresylphosphate (TCP), tris(2-chloroethyl)phosphate (TCEP), tris(chloropropyl)phosphate (TCPP), tris(1,3-dichloro-2-propyl)phosphate (TDCPP), and tetrekis(2-chlorethyl)dichloroisopentyldiphosphate (V6) a number of studies have been performed on their occurrence in air, water and sediment, but limited data were found on their occurrence in biota. Concentrations found for these PFRs in air were up to 47 μg m(-3), in sediment levels up to 24 mg kg(-1) were found, and in surface water concentrations up to 379 ng L(-1). In all these matrices TCPP was dominant. Concentrations found in dust were up to 67 mg kg(-1), with TDCPP being the dominant PFR. PFR concentrations reported were often higher than polybrominated diphenylether (PBDE) concentrations, and the human exposure due to PFR concentrations in indoor air appears to be higher than exposure due to PBDE concentrations in indoor air. Only the Cl-containing PFRs are carcinogenic. Other negative human health effects were found for Cl-containing PFRs as well as for TCP, which suggest that those PFRs would not be suitable alternatives for BFRs. TPhP, diphenylcresylphosphate (DCP) and TCP would not be suitable alternatives either, because they are considered to be toxic to (aquatic) organisms. Diethylphosphinic acid is, just like TCEP, considered to be very persistent. From an environmental perspective, resorcinol-bis(diphenylphosphate) (RDP), bisphenol-A diphenyl phosphate (BADP) and melamine polyphosphate, may be suitable good substitutes for BFRs. Information on PFR analysis in air, water and sediment is limited to TCEP, TCPP, TPhP, TCP and some other organophosphate esters. For air sampling passive samplers have been used as well as solid phase extraction (SPE) membranes, SPE cartridges, and solid phase micro-extraction (SPME). For extraction of PFRs from water SPE is recommended, because this method gives good recoveries (67-105%) and acceptable relative standard deviations (RSDs) (<20%), and offers the option of on-line coupling with a detection system. For the extraction of PFRs from sediment microwave-assisted extraction (MAE) is recommended. The recoveries (78-105%) and RSDs (3-8%) are good and the method is faster and requires less solvent compared to other methods. For the final instrumental analysis of PFRs, gas chromatography-flame photometric detection (GC-FPD), GC-nitrogen-phosphorus detection (NPD), GC-atomic emission detection (AED), GC-mass spectrometry (MS) as well as liquid chromatography (LC)-MS/MS and GC-Inductively-coupled plasma-MS (ICP-MS) are used. GC-ICP-MS is a promising method, because it provides much less complex chromatograms while offering the same recoveries and limits of detection (LOD) (instrumental LOD is 5-10 ng mL(-1)) compared to GC-NPD and GC-MS, which are frequently used methods for PFR analysis. GC-MS offers a higher selectivity than GC-NPD and the possibility of using isotopically labeled compounds for quantification. Copyright © 2012 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Wildlife ecotoxicology of pesticides: can we track effects to the population level and beyond?

            During the past 50 years, the human population has more than doubled and global agricultural production has similarly risen. However, the productive arable area has increased by just 10%; thus the increased use of pesticides has been a consequence of the demands of human population growth, and its impact has reached global significance. Although we often know a pesticide's mode of action in the target species, we still largely do not understand the full impact of unintended side effects on wildlife, particularly at higher levels of biological organization: populations, communities, and ecosystems. In these times of regional and global species declines, we are challenged with the task of causally linking knowledge about the molecular actions of pesticides to their possible interference with biological processes, in order to develop reliable predictions about the consequences of pesticide use, and misuse, in a rapidly changing world.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Global patterns of drought recovery

              Drought, a recurring phenomenon with major impacts on both human and natural systems, is the most widespread climatic extreme that negatively affects the land carbon sink. Although twentieth-century trends in drought regimes are ambiguous, across many regions more frequent and severe droughts are expected in the twenty-first century. Recovery time—how long an ecosystem requires to revert to its pre-drought functional state—is a critical metric of drought impact. Yet the factors influencing drought recovery and its spatiotemporal patterns at the global scale are largely unknown. Here we analyse three independent datasets of gross primary productivity and show that, across diverse ecosystems, drought recovery times are strongly associated with climate and carbon cycle dynamics, with biodiversity and CO2 fertilization as secondary factors. Our analysis also provides two key insights into the spatiotemporal patterns of drought recovery time: first, that recovery is longest in the tropics and high northern latitudes (both vulnerable areas of Earth’s climate system) and second, that drought impacts (assessed using the area of ecosystems actively recovering and time to recovery) have increased over the twentieth century. If droughts become more frequent, as expected, the time between droughts may become shorter than drought recovery time, leading to permanently damaged ecosystems and widespread degradation of the land carbon sink.
                Bookmark

                Author and article information

                Contributors
                Journal
                Environ Sci Ecotechnol
                Environ Sci Ecotechnol
                Environmental Science and Ecotechnology
                Elsevier
                2096-9643
                2666-4984
                19 February 2024
                September 2024
                19 February 2024
                : 21
                : 100401
                Affiliations
                [a ]State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
                [b ]College of Environment, Hohai University, Nanjing, 210098, China
                [c ]Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
                [d ]China National Environmental Monitoring Centre, Beijing, 100012, China
                Author notes
                []Corresponding author. fengcl@ 123456craes.org.cn
                Article
                S2666-4984(24)00015-2 100401
                10.1016/j.ese.2024.100401
                10937237
                38487363
                a1e0a1ce-7711-400d-b8af-19c49ccaf335
                © 2024 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 14 July 2023
                : 8 February 2024
                : 10 February 2024
                Categories
                Original Research

                organophosphate esters,driving factor,bioaccumulation and biomagnification,ecological risk

                Comments

                Comment on this article