16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Microgravity as a novel environmental signal affecting Salmonella enterica serovar Typhimurium virulence.

      Infection and Immunity
      Acids, Animals, Bacterial Proteins, biosynthesis, Bioreactors, Female, Hypogravity, Mice, Mice, Inbred BALB C, Physics, instrumentation, Salmonella Infections, Animal, etiology, mortality, Salmonella typhimurium, pathogenicity, Serotyping, Signal Transduction, Stress, Physiological, United States, United States National Aeronautics and Space Administration, Virulence

      Read this article at

      ScienceOpenPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The effects of spaceflight on the infectious disease process have only been studied at the level of the host immune response and indicate a blunting of the immune mechanism in humans and animals. Accordingly, it is necessary to assess potential changes in microbial virulence associated with spaceflight which may impact the probability of in-flight infectious disease. In this study, we investigated the effect of altered gravitational vectors on Salmonella virulence in mice. Salmonella enterica serovar Typhimurium grown under modeled microgravity (MMG) were more virulent and were recovered in higher numbers from the murine spleen and liver following oral infection compared to organisms grown under normal gravity. Furthermore, MMG-grown salmonellae were more resistant to acid stress and macrophage killing and exhibited significant differences in protein synthesis than did normal-gravity-grown cells. Our results indicate that the environment created by simulated microgravity represents a novel environmental regulatory factor of Salmonella virulence.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: not found
          • Article: not found

          Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            High resolution two-dimensional electrophoresis of proteins.

            A technique has been developed for the separation of proteins by two-dimensional polyacrylamide gel electrophoresis. Due to its resolution and sensitivity, this technique is a powerful tool for the analysis and detection of proteins from complex biological sources. Proteins are separated according to isoelectric point by isoelectric focusing in the first dimension, and according to molecular weight by sodium dodecyl sulfate electrophoresis in the second dimension. Since these two parameters are unrelated, it is possible to obtain an almost uniform distribution of protein spots across a two-diminsional gel. This technique has resolved 1100 different components from Escherichia coli and should be capable of resolving a maximum of 5000 proteins. A protein containing as little as one disintegration per min of either 14C or 35S can be detected by autoradiography. A protein which constitutes 10 minus 4 to 10 minus 5% of the total protein can be detected and quantified by autoradiography. The reproducibility of the separation is sufficient to permit each spot on one separation to be matched with a spot on a different separation. This technique provides a method for estimation (at the described sensitivities) of the number of proteins made by any biological system. This system can resolve proteins differing in a single charge and consequently can be used in the analysis of in vivo modifications resulting in a change in charge. Proteins whose charge is changed by missense mutations can be identified. A detailed description of the methods as well as the characteristics of this system are presented.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Growing tissues in microgravity.

                Bookmark

                Author and article information

                Comments

                Comment on this article