9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Perceptual bias reveals slow-updating in autism and fast-forgetting in dyslexia

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Bayesian integration in sensorimotor learning.

          When we learn a new motor skill, such as playing an approaching tennis ball, both our sensors and the task possess variability. Our sensors provide imperfect information about the ball's velocity, so we can only estimate it. Combining information from multiple modalities can reduce the error in this estimate. On a longer time scale, not all velocities are a priori equally probable, and over the course of a match there will be a probability distribution of velocities. According to bayesian theory, an optimal estimate results from combining information about the distribution of velocities-the prior-with evidence from sensory feedback. As uncertainty increases, when playing in fog or at dusk, the system should increasingly rely on prior knowledge. To use a bayesian strategy, the brain would need to represent the prior distribution and the level of uncertainty in the sensory feedback. Here we control the statistical variations of a new sensorimotor task and manipulate the uncertainty of the sensory feedback. We show that subjects internally represent both the statistical distribution of the task and their sensory uncertainty, combining them in a manner consistent with a performance-optimizing bayesian process. The central nervous system therefore employs probabilistic models during sensorimotor learning.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sensory perception in autism.

            Autism is a complex neurodevelopmental condition, and little is known about its neurobiology. Much of autism research has focused on the social, communication and cognitive difficulties associated with the condition. However, the recent revision of the diagnostic criteria for autism has brought another key domain of autistic experience into focus: sensory processing. Here, we review the properties of sensory processing in autism and discuss recent computational and neurobiological insights arising from attention to these behaviours. We argue that sensory traits have important implications for the development of animal and computational models of the condition. Finally, we consider how difficulties in sensory processing may relate to the other domains of behaviour that characterize autism.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Serial dependence in visual perception

              Visual input often arrives in a noisy and discontinuous stream, owing to head and eye movements, occlusion, lighting changes, and many other factors. Yet the physical world is generally stable—objects and physical characteristics rarely change spontaneously. How then does the human visual system capitalize on continuity in the physical environment over time? Here we show that visual perception is serially dependent, using both prior and present input to inform perception at the present moment. Using an orientation judgment task, we found that even when visual input changes randomly over time, perceived orientation is strongly and systematically biased toward recently seen stimuli. Further, the strength of this bias is modulated by attention and tuned to the spatial and temporal proximity of successive stimuli. These results reveal a serial dependence in perception characterized by a spatiotemporally tuned, orientation-selective operator—which we call a continuity field—that may promote visual stability over time.
                Bookmark

                Author and article information

                Journal
                Nature Neuroscience
                Nat Neurosci
                Springer Science and Business Media LLC
                1097-6256
                1546-1726
                February 2019
                January 14 2019
                February 2019
                : 22
                : 2
                : 256-264
                Article
                10.1038/s41593-018-0308-9
                65e979fb-1f59-423d-a2aa-4978f887487c
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article