41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Increased activity in frontal motor cortex compensates impaired speech perception in older adults

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Understanding speech in noisy environments is challenging, especially for seniors. Although evidence suggests that older adults increasingly recruit prefrontal cortices to offset reduced periphery and central auditory processing, the brain mechanisms underlying such compensation remain elusive. Here we show that relative to young adults, older adults show higher activation of frontal speech motor areas as measured by functional MRI during a syllable identification task at varying signal-to-noise ratios. This increased activity correlates with improved speech discrimination performance in older adults. Multivoxel pattern classification reveals that despite an overall phoneme dedifferentiation, older adults show greater specificity of phoneme representations in frontal articulatory regions than auditory regions. Moreover, older adults with stronger frontal activity have higher phoneme specificity in frontal and auditory regions. Thus, preserved phoneme specificity and upregulation of activity in speech motor regions provide a means of compensation in older adults for decoding impoverished speech representations in adverse listening conditions.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Information-based functional brain mapping.

          The development of high-resolution neuroimaging and multielectrode electrophysiological recording provides neuroscientists with huge amounts of multivariate data. The complexity of the data creates a need for statistical summary, but the local averaging standardly applied to this end may obscure the effects of greatest neuroscientific interest. In neuroimaging, for example, brain mapping analysis has focused on the discovery of activation, i.e., of extended brain regions whose average activity changes across experimental conditions. Here we propose to ask a more general question of the data: Where in the brain does the activity pattern contain information about the experimental condition? To address this question, we propose scanning the imaged volume with a "searchlight," whose contents are analyzed multivariately at each location in the brain.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Aging gracefully: compensatory brain activity in high-performing older adults.

            Whereas some older adults show significant cognitive deficits, others perform as well as young adults. We investigated the neural basis of these different aging patterns using positron emission tomography (PET). In PET and functional MRI (fMRI) studies, prefrontal cortex (PFC) activity tends to be less asymmetric in older than in younger adults (Hemispheric Asymmetry Reduction in Old Adults or HAROLD). This change may help counteract age-related neurocognitive decline (compensation hypothesis) or it may reflect an age-related difficulty in recruiting specialized neural mechanisms (dedifferentiation hypothesis). To compare these two hypotheses, we measured PFC activity in younger adults, low-performing older adults, and high-performing older adults during recall and source memory of recently studied words. Compared to recall, source memory was associated with right PFC activations in younger adults. Low-performing older adults recruited similar right PFC regions as young adults, but high-performing older adults engaged PFC regions bilaterally. Thus, consistent with the compensation hypothesis and inconsistent with the dedifferentiation hypothesis, a hemispheric asymmetry reduction was found in high-performing but not in low-performing older adults. The results suggest that low-performing older adults recruited a similar network as young adults but used it inefficiently, whereas high-performing older adults counteracted age-related neural decline through a plastic reorganization of neurocognitive networks.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The cognitive neuroscience of ageing.

              The availability of neuroimaging technology has spurred a marked increase in the human cognitive neuroscience literature, including the study of cognitive ageing. Although there is a growing consensus that the ageing brain retains considerable plasticity of function, currently measured primarily by means of functional MRI, it is less clear how age differences in brain activity relate to cognitive performance. The field is also hampered by the complexity of the ageing process itself and the large number of factors that are influenced by age. In this Review, current trends and unresolved issues in the cognitive neuroscience of ageing are discussed.
                Bookmark

                Author and article information

                Journal
                Nature Communications
                Nat Commun
                Springer Science and Business Media LLC
                2041-1723
                November 2016
                August 2 2016
                November 2016
                : 7
                : 1
                Article
                10.1038/ncomms12241
                3ef8d564-48cf-4bcb-8246-acb72c2cce53
                © 2016

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article