7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Effects of postural and voluntary muscle contraction on modulation of the soleus H reflex by transcranial magnetic stimulation

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Magnetic transcranial stimulation at intensities below active motor threshold activates intracortical inhibitory circuits.

          A magnetic transcranial conditioning stimulus given over the motor cortex at intensities below threshold for obtaining electromyographical (EMG) responses in active hand muscles can suppress responses evoked in the same muscles at rest by a suprathreshold magnetic test stimulus given 1-5 ms later. In order to define the mechanism of this inhibitory effect, we recorded descending volleys produced by single and paired magnetic transcranial stimulation of motor cortex through high cervical, epidural electrodes implanted for pain relief in two conscious subjects with no abnormality of the central nervous system. The conditioning stimulus evoked no recognisable descending activity in the spinal cord, whilst the test stimulus evoked 3-4 waves of activity (I-waves). Conditioning stimulation suppressed the size of both the descending spinal cord volleys and the EMG responses evoked by the test stimulus. Inhibition of the descending spinal volleys was most pronounced at ISI 1 ms and had disappeared by ISI 5 ms. It was evident for all components following the I1-wave, while the I1-wave itself was not inhibited at all. We conclude that a small conditioning magnetic stimulus can suppress the excitability of human motor cortex, probably by activating local corticocortical inhibitory circuits.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effects of voluntary contraction on descending volleys evoked by transcranial stimulation in conscious humans.

            1. The spinal volleys evoked by single transcranial magnetic or electric stimulation over the cerebral motor cortex were recorded from a bipolar electrode inserted into the cervical epidural space of three conscious human subjects. These volleys were termed direct (D) and indirect (I) waves according to their latency. 2. We measured the size and number of volleys elicited by magnetic stimulation at various intensities with subjects at rest and during 20 or 100 % maximum contraction of the contralateral first dorsal interosseous muscle (FDI). Surface EMG activity was also recorded. 3. Electrical stimulation evoked a D-wave volley. Magnetic stimulation at intensities up to about 15 % of stimulator output above threshold evoked only I-waves. At higher intensities, a D-wave could be seen in two of the three subjects. 4. At all intensities tested, voluntary contraction increased the number and size of the I-waves, particularly during maximum contractions. However, there was only a small effect on the threshold for evoking descending activity. Voluntary contraction produced large changes in the size of EMG responses recorded from FDI. 5. Because the recorded epidural activity is destined for muscles other than the FDI, it is impossible to say to what extent increased activity contributes to voluntary facilitation of EMG responses. Indeed, our results suggest that the main factor responsible for enhancing EMG responses in the transition from rest to activity is likely to be increased excitability of spinal motoneurones, rather than increases in the corticospinal volley. The latter may be more important in producing EMG facilitation at different levels of voluntary contraction.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Direct corticospinal pathways contribute to neuromuscular control of perturbed stance.

              The antigravity soleus muscle (Sol) is crucial for compensation of stance perturbation. A corticospinal contribution to the compensatory response of the Sol is under debate. The present study assessed spinal, corticospinal, and cortical excitability at the peaks of short- (SLR), medium- (MLR), and long-latency responses (LLR) after posterior translation of the feet. Transcranial magnetic stimulation (TMS) and peripheral nerve stimulation were individually adjusted so that the peaks of either motor evoked potential (MEP) or H reflex coincided with peaks of SLR, MLR, and LLR, respectively. The influence of specific, presumably direct, corticospinal pathways was investigated by H-reflex conditioning. When TMS was triggered so that the MEP arrived in the Sol at the same time as the peaks of SLR and MLR, EMG remained unaffected. Enhanced EMG was observed when the MEP coincided with the LLR peak (P < 0.001). Similarly, conditioning of the H reflex by subthreshold TMS facilitated H reflexes only at LLR (P < 0.001). The earliest facilitation after perturbation occurred after 86 ms. The TMS-induced H-reflex facilitation at LLR suggests that increased cortical excitability contributes to the augmentation of the LLR peaks. This provides evidence that the LLR in the Sol muscle is at least partly transcortical, involving direct corticospinal pathways. Additionally, these results demonstrate that approximately 86 ms after perturbation, postural compensatory responses are cortically mediated.
                Bookmark

                Author and article information

                Journal
                Experimental Brain Research
                Exp Brain Res
                Springer Nature
                0014-4819
                1432-1106
                December 2015
                August 20 2015
                : 233
                : 12
                : 3425-3431
                Article
                10.1007/s00221-015-4417-3
                d526e807-54aa-4fe5-88f8-6a747c187ce3
                © 2015
                History

                Comments

                Comment on this article