5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Integrated analysis identifies TfR1 as a prognostic biomarker which correlates with immune infiltration in breast cancer

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Breast cancer (BC) is the most common malignancy with high morbidity and mortality in females worldwide. Emerging evidence indicates that transferrin receptor 1 (TfR1) plays vital roles in regulating cellular iron import. However, the distinct role of TfR1 in BC remains elusive. TfR1 expression was investigated using the TCGA, GEO, TIMER, UALCAN and Oncomine databases. The prognostic potential of TfR1 was evaluated by Kaplan-Meier (KM) plotter and univariate and multivariate Cox regression analyses. Moreover, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene set enrichment analysis (GSEA) were used to explore the molecular mechanism of TfR1. The potential link between TfR1 expression and infiltrating abundances of immune cells was examined through the TIMER and CIBERSORT algorithm. The expression of TfR1 was dramatically upregulated in BC tissues. Increased TfR1 expression and decreased methylation levels of TfR1 were strongly correlated with multiple clinicopathological parameters. Elevated TfR1 expression was associated with a poor survival rate in BC patients. The nomogram model further confirmed that TfR1 could act as an independent prognostic biomarker in BC. The results of GO, KEGG and GSEA revealed that TfR1 was closely correlated with multiple signaling pathways and immune responses. Additionally, TfR1 was positively associated with the infiltration abundances of six major immune cells, including CD4+ T cells, CD8+ T cells, B cells, neutrophils, macrophages, and dendritic cells in BC. Interestingly, TfR1 influenced prognosis partially through immune infiltration. These comprehensive bioinformatics analyses suggest that TfR1 is a new independent prognostic biomarker and a potential target for immunotherapy in BC.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries

          This article provides a status report on the global burden of cancer worldwide using the GLOBOCAN 2018 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer, with a focus on geographic variability across 20 world regions. There will be an estimated 18.1 million new cancer cases (17.0 million excluding nonmelanoma skin cancer) and 9.6 million cancer deaths (9.5 million excluding nonmelanoma skin cancer) in 2018. In both sexes combined, lung cancer is the most commonly diagnosed cancer (11.6% of the total cases) and the leading cause of cancer death (18.4% of the total cancer deaths), closely followed by female breast cancer (11.6%), prostate cancer (7.1%), and colorectal cancer (6.1%) for incidence and colorectal cancer (9.2%), stomach cancer (8.2%), and liver cancer (8.2%) for mortality. Lung cancer is the most frequent cancer and the leading cause of cancer death among males, followed by prostate and colorectal cancer (for incidence) and liver and stomach cancer (for mortality). Among females, breast cancer is the most commonly diagnosed cancer and the leading cause of cancer death, followed by colorectal and lung cancer (for incidence), and vice versa (for mortality); cervical cancer ranks fourth for both incidence and mortality. The most frequently diagnosed cancer and the leading cause of cancer death, however, substantially vary across countries and within each country depending on the degree of economic development and associated social and life style factors. It is noteworthy that high-quality cancer registry data, the basis for planning and implementing evidence-based cancer control programs, are not available in most low- and middle-income countries. The Global Initiative for Cancer Registry Development is an international partnership that supports better estimation, as well as the collection and use of local data, to prioritize and evaluate national cancer control efforts. CA: A Cancer Journal for Clinicians 2018;0:1-31. © 2018 American Cancer Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Iron and cancer: more ore to be mined.

            Iron is an essential nutrient that facilitates cell proliferation and growth. However, iron also has the capacity to engage in redox cycling and free radical formation. Therefore, iron can contribute to both tumour initiation and tumour growth; recent work has also shown that iron has a role in the tumour microenvironment and in metastasis. Pathways of iron acquisition, efflux, storage and regulation are all perturbed in cancer, suggesting that reprogramming of iron metabolism is a central aspect of tumour cell survival. Signalling through hypoxia-inducible factor (HIF) and WNT pathways may contribute to altered iron metabolism in cancer. Targeting iron metabolic pathways may provide new tools for cancer prognosis and therapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Two to tango: regulation of Mammalian iron metabolism.

              Disruptions in iron homeostasis from both iron deficiency and overload account for some of the most common human diseases. Iron metabolism is balanced by two regulatory systems, one that functions systemically and relies on the hormone hepcidin and the iron exporter ferroportin, and another that predominantly controls cellular iron metabolism through iron-regulatory proteins that bind iron-responsive elements in regulated messenger RNAs. We describe how the two distinct systems function and how they "tango" together in a coordinated manner. We also highlight some of the current questions in mammalian iron metabolism and discuss therapeutic opportunities arising from a better understanding of the underlying biological principles. Copyright 2010 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Aging (Albany NY)
                Aging
                Aging (Albany NY)
                Impact Journals
                1945-4589
                15 September 2021
                13 September 2021
                : 13
                : 17
                : 21671-21699
                Affiliations
                [1 ]Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
                Author notes
                [*]

                Equal contribution

                Correspondence to: Ke Tan; email: tanke@hebtu.edu.cn
                Article
                203512 203512
                10.18632/aging.203512
                8457555
                34518441
                315e18d9-a66e-410a-baca-25953bb5a4e7
                Copyright: © 2021 Chen et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 04 March 2021
                : 24 August 2021
                Categories
                Research Paper

                Cell biology
                tfr1,breast cancer,prognosis,immune infiltration,iron
                Cell biology
                tfr1, breast cancer, prognosis, immune infiltration, iron

                Comments

                Comment on this article