17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fractographic features of glass-ceramic and zirconia-based dental restorations fractured during clinical function

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fractures during clinical function have been reported as the major concern associated with all-ceramic dental restorations. The aim of this study was to analyze the fracture features of glass-ceramic and zirconia-based restorations fractured during clinical use. Twenty-seven crowns and onlays were supplied by dentists and dental technicians with information about type of cement and time in function, if available. Fourteen lithium disilicate glass-ceramic restorations and 13 zirconia-based restorations were retrieved and analyzed. Fractographic features were examined using optical microscopy to determine crack initiation and crack propagation of the restorations. The material comprised fractured restorations from one canine, 10 incisors, four premolars, and 11 molars. One crown was not categorized because of difficulty in orientation of the fragments. The results revealed that all core and veneer fractures initiated in the cervical margin and usually from the approximal area close to the most coronally placed curvature of the margin. Three cases of occlusal chipping were found. The margin of dental all-ceramic single-tooth restorations was the area of fracture origin. The fracture features were similar for zirconia, glass-ceramic, and alumina single-tooth restorations. Design features seem to be of great importance for fracture initiation.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Clinically relevant approach to failure testing of all-ceramic restorations.

          One common test of single-unit restorations involves applying loads to clinically realistic specimens through spherical indenters, or equivalently, loading curved incisal edges against flat compression platens. As knowledge has become available regarding clinical failure mechanisms and the behavior of in vitro tests, it is possible to constructively question the clinical validity of such failure testing and to move toward developing more relevant test methods. This article reviewed characteristics of the traditional load-to-failure test, contrasted these with characteristics of clinical failure for all-ceramic restorations, and sought to explain the discrepancies. Literature regarding intraoral conditions was reviewed to develop an understanding of how laboratory testing could be revised. Variables considered to be important in simulating clinical conditions were described, along with their recent laboratory evaluation. Traditional fracture tests of single unit all-ceramic prostheses are inappropriate, because they do not create failure mechanisms seen in retrieved clinical specimens. Validated tests are needed to elucidate the role(s) that cement systems, bonding, occlusion, and even metal copings play in the success of fixed prostheses and to make meaningful comparisons possible among novel ceramic and metal substructures. Research over the past 6 years has shown that crack systems mimicking clinical failure can be produced in all-ceramic restorations under appropriate conditions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Clinical trials in zirconia: a systematic review.

            Zirconia is unique in its polymorphic crystalline makeup, reported to be sensitive to manufacturing and handling processes, and there is debate about which processing method is least harmful to the final product. Currently, zirconia restorations are manufactured by either soft or hard-milling processes, with the manufacturer of each claiming advantages over the other. Chipping of the veneering porcelain is reported as a common problem and has been labelled as its main clinical setback. The objective of this systematic review is to report on the clinical success of zirconia-based restorations fabricated by both milling processes, in regard to framework fractures and veneering porcelain chipping. A comprehensive review of the literature was completed for in vivo trials on zirconia restorations in MEDLINE and PubMed between 1950 and 2009. A manual hand search of relevant dental journals was also completed. Seventeen clinical trials involving zirconia-based restorations were found, 13 were conducted on fixed partial dentures, two on single crowns and two on zirconia implant abutments, of which 11 were based on soft-milled zirconia and six on hard-milled zirconia. Chipping of the veneering porcelain was a common occurrence, and framework fracture was only observed in soft-milled zirconia. Based on the limited number of short-term in vivo studies, zirconia appears to be suitable for the fabrication of single crowns, and fixed partial dentures and implant abutments providing strict protocols during the manufacturing and delivery process are adhered to. Further long-term prospective studies are necessary to establish the best manufacturing process for zirconia-based restorations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The mechanical properties of human dentin: a critical review and re-evaluation of the dental literature.

              The past 50 years of research on the mechanical properties of human dentin are reviewed. Since the body of work in this field is highly inconsistent, it was often necessary to re-analyze prior studies, when possible, and to re-assess them within the framework of composite mechanics and dentin structure. A critical re-evaluation of the literature indicates that the magnitudes of the elastic constants of dentin must be revised considerably upward. The Young's and shear moduli lie between 20-25 GPa and 7-10 GPa, respectively. Viscoelastic behavior (time-dependent stress relaxation) measurably reduces these values at strain rates of physiological relevance; the reduced modulus (infinite relaxation time) is about 12 GPa. Furthermore, it appears as if the elastic properties are anisotropic (not the same in all directions); sonic methods detect hexagonal anisotropy, although its magnitude appears to be small. Strength data are re-interpreted within the framework of the Weibull distribution function. The large coefficients of variation cited in all strength studies can then be understood in terms of a distribution of flaws within the dentin specimens. The apparent size-effect in the tensile and shear strength data has its origins in this flaw distribution, and can be quantified by the Weibull analysis. Finally, the relatively few fracture mechanics and fatigue studies are discussed. Dentin has a fatigue limit. For stresses smaller than the normal stresses of mastication, approximately 30 MPa, a flaw-free dentin specimen apparently will not fail. However, a more conservative approach based on fatigue crack growth rates indicates that if there is a pre-existing flaw of sufficient size (approximately 0.3-1.0 mm), it can grow to catastrophic proportion with cyclic loading at stresses below 30 MPa.
                Bookmark

                Author and article information

                Journal
                Eur J Oral Sci
                Eur. J. Oral Sci
                eos
                European Journal of Oral Sciences
                BlackWell Publishing Ltd (Oxford, UK )
                0909-8836
                1600-0722
                June 2014
                04 April 2014
                : 122
                : 3
                : 238-244
                Affiliations
                [1 ]Department of Clinical Dentistry, Faculty of Medicine and Dentistry, University of Bergen Bergen, Norway
                Author notes
                Marit Øilo, Department of Clinical Dentistry – Biomaterials, Faculty of Medicine and Dentistry, University of Bergen, Postboks 7804, N-5020 Bergen, Norway, E-mail: marit.oilo@ 123456iko.uib.no
                Article
                10.1111/eos.12127
                4199274
                24698173
                21d28950-70aa-49e7-8f2d-cdd5b801c548
                © 2014 The Authors. Eur J Oral Sci published by John Wiley & Sons Ltd

                This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 10 February 2014
                Categories
                Original Articles

                Dentistry
                crowns,dental ceramics,fractures,glass-ceramic,zirconia
                Dentistry
                crowns, dental ceramics, fractures, glass-ceramic, zirconia

                Comments

                Comment on this article