19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Recent advancements in bio-based dielectric and piezoelectric polymers and their biomedical applications

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bio-based polymers possess distinctive dielectric and piezoelectric properties that make them extremely attractive in a variety of biomedical applications.

          Abstract

          The advent of polymer-based dielectrics marked a significant breakthrough in dielectric materials. However, despite their many advantages, they pose serious environmental threats. Therefore, in recent years, there has been growing interest in bio-based polymers as a sustainable alternative to traditional petroleum-based polymers. Their renewable nature and reduced environmental impact can fulfil the rising demand for eco-friendly substitutes. Beyond their ecological benefits, bio-based polymers also possess distinctive electrical properties that make them extremely attractive in a variety of applications. Considering these, herein, we present recent advancements in bio-based dielectric polymers and nanocomposites. First, the fundamental concepts of dielectric and polymer-based dielectric materials are covered. Then, we will delve into the discussion of recent advancements in the dielectric properties and thermal stability of bio-based polymers, including polylactic acid, polyhydroxyalkanoates, polybutylene succinate, starch, cellulose, chitosan, chitins, and alginates, and their nanocomposites. Other novel bio-based dielectric polymers and their distinct dielectric characteristics have also been pointed out. In an additional section, the piezoelectric properties of these polymers and their recent biomedical applications have been highlighted and discussed thoroughly. In conclusion, this paper thoroughly discusses the recent advances in bio-based dielectric polymers and their potential to revolutionize the biomedical industry while cultivating a more sustainable and greener future.

          Related collections

          Most cited references154

          • Record: found
          • Abstract: not found
          • Article: not found

          Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH) x

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications.

            With the arising of global climate change and resource shortage, in recent years, increased attention has been paid to environmentally friendly materials. Trees are sustainable and renewable materials, which give us shelter and oxygen and remove carbon dioxide from the atmosphere. Trees are a primary resource that human society depends upon every day, for example, homes, heating, furniture, and aircraft. Wood from trees gives us paper, cardboard, and medical supplies, thus impacting our homes, school, work, and play. All of the above-mentioned applications have been well developed over the past thousands of years. However, trees and wood have much more to offer us as advanced materials, impacting emerging high-tech fields, such as bioengineering, flexible electronics, and clean energy. Wood naturally has a hierarchical structure, composed of well-oriented microfibers and tracheids for water, ion, and oxygen transportation during metabolism. At higher magnification, the walls of fiber cells have an interesting morphology-a distinctly mesoporous structure. Moreover, the walls of fiber cells are composed of thousands of fibers (or macrofibrils) oriented in a similar angle. Nanofibrils and nanocrystals can be further liberated from macrofibrils by mechanical, chemical, and enzymatic methods. The obtained nanocellulose has unique optical, mechanical, and barrier properties and is an excellent candidate for chemical modification and reconfiguration. Wood is naturally a composite material, comprised of cellulose, hemicellulose, and lignin. Wood is sustainable, earth abundant, strong, biodegradable, biocompatible, and chemically accessible for modification; more importantly, multiscale natural fibers from wood have unique optical properties applicable to different kinds of optoelectronics and photonic devices. Today, the materials derived from wood are ready to be explored for applications in new technology areas, such as electronics, biomedical devices, and energy. The goal of this study is to review the fundamental structures and chemistries of wood and wood-derived materials, which are essential for a wide range of existing and new enabling technologies. The scope of the review covers multiscale materials and assemblies of cellulose, hemicellulose, and lignin as well as other biomaterials derived from wood, in regard to their major emerging applications. Structure-properties-application relationships will be investigated in detail. Understanding the fundamental properties of these structures is crucial for designing and manufacturing products for emerging applications. Today, a more holistic understanding of the interplay between the structure, chemistry, and performance of wood and wood-derived materials is advancing historical applications of these materials. This new level of understanding also enables a myriad of new and exciting applications, which motivate this review. There are excellent reviews already on the classical topic of woody materials, and some recent reviews also cover new understanding of these materials as well as potential applications. This review will focus on the uniqueness of woody materials for three critical applications: green electronics, biological devices, and energy storage and bioenergy.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The Piezoelectricity of Poly (vinylidene Fluoride)

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                JMCBDV
                Journal of Materials Chemistry B
                J. Mater. Chem. B
                Royal Society of Chemistry (RSC)
                2050-750X
                2050-7518
                June 05 2024
                2024
                : 12
                : 22
                : 5272-5298
                Affiliations
                [1 ]Faculty of Petroleum, Gas and Petrochemical Engineering, Persian Gulf University, Bushehr, 75169, Iran
                [2 ]Department of Polymer Processing, Iran Polymer and Petrochemical Institute, P.O. BOX: 14975/112, Tehran, Iran
                [3 ]São Paulo State University (Unesp), School of Technology and Sciences, Presidente Prudente, SP, 19060-900, Brazil
                Article
                10.1039/D4TB00231H
                d9b519e0-339f-4e20-bf71-ea0824300d1c
                © 2024

                http://rsc.li/journals-terms-of-use

                History

                Comments

                Comment on this article