6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Combining Ability and Performance of Extra-Early Maturing Provitamin A Maize Inbreds and Derived Hybrids in Multiple Environments.

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Availability of maize (Zea mays L.) hybrids with elevated provitamin A (PVA) levels and tolerance to contrasting stresses would improve food self-sufficiency and combat malnutrition in sub-Saharan Africa (SSA). This study was conducted to (i) analyze selected PVA inbreds of extra-early maturity for carotenoid content, (ii) estimate the combining abilities of the inbred lines for grain yield and other agronomic traits, (iii) assign inbred lines to distinct heterotic groups (HGs), (iv) identify testers among the inbred lines, and (v) determine grain yield and stability of the PVA hybrids across contrasting environments. Thirty-three extra-early maturing inbred lines selected for high carotenoid content were crossed with four inbred testers to obtain 132 testcrosses. The testcrosses, six tester × tester crosses and two hybrid checks, were evaluated across three Striga-infested, four drought and five optimal growing environments in Nigeria, 2014-2016. Results of the chemical analysis revealed that inbred lines TZEEIOR 109, TZEEIOR 30, TZEEIOR 41, TZEEIOR 97, TZEEIOR 42, and TZEEIOR 140 had intermediate PVA levels. Both additive and nonadditive gene actions were important in the inheritance of grain yield and other measured traits under stress and optimal environments. However, additive gene action was preponderant over the nonadditive gene action. The inbred lines were classified into three HGs across environments. Inbreds TZEEIOR 249 and TZEEIOR 30 were identified as testers for HGs I and II, respectively. The hybrid TZEEI 79 × TZEEIOR 30 was the most outstanding in terms of grain yield and was stable across environments. This hybrid should be tested extensively in on-farm trials for consistency in performance and commercialized to combat malnutrition and food insecurity in SSA.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification.

          Dietary vitamin A deficiency causes eye disease in 40 million children each year and places 140 to 250 million at risk for health disorders. Many children in sub-Saharan Africa subsist on maize-based diets. Maize displays considerable natural variation for carotenoid composition, including vitamin A precursors alpha-carotene, beta-carotene, and beta-cryptoxanthin. Through association analysis, linkage mapping, expression analysis, and mutagenesis, we show that variation at the lycopene epsilon cyclase (lcyE) locus alters flux down alpha-carotene versus beta-carotene branches of the carotenoid pathway. Four natural lcyE polymorphisms explained 58% of the variation in these two branches and a threefold difference in provitamin A compounds. Selection of favorable lcyE alleles with inexpensive molecular markers will now enable developing-country breeders to more effectively produce maize grain with higher provitamin A levels.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Biofortification: Progress toward a more nourishing future

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biofortified orange maize is as efficacious as a vitamin A supplement in Zambian children even in the presence of high liver reserves of vitamin A: a community-based, randomized placebo-controlled trial123456

              Background: Biofortification is a strategy to relieve vitamin A (VA) deficiency. Biofortified maize contains enhanced provitamin A concentrations and has been bioefficacious in animal and small human studies. Objective: The study sought to determine changes in total body reserves (TBRs) of vitamin A with consumption of biofortified maize. Design: A randomized, placebo-controlled biofortified maize efficacy trial was conducted in 140 rural Zambian children. The paired 13C-retinol isotope dilution test, a sensitive biomarker for VA status, was used to measure TBRs before and after a 90-d intervention. Treatments were white maize with placebo oil (VA−), orange maize with placebo (orange), and white maize with VA in oil [400 μg retinol activity equivalents (RAEs) in 214 μL daily] (VA+). Results: In total, 133 children completed the trial and were analyzed for TBRs (n = 44 or 45/group). Change in TBR residuals were not normally distributed (P 1 μmol/g, the subtoxicity cutoff; none were <0.1 μmol/g, the deficiency cutoff. The calculated bioconversion factor was 10.4 μg β-carotene equivalents/1 μg retinol by using the middle 3 quintiles of change in TBRs from each group. Serum retinol did not change in response to intervention (P = 0.16) but was reduced with elevated C-reactive protein (P = 0.0029) and α-1-acid glycoprotein (P = 0.0023) at baseline. Conclusions: β-Carotene from maize was efficacious when consumed as a staple food in this population and could avoid the potential for hypervitaminosis A that was observed with the use of preformed VA from supplementation and fortification. Use of more sensitive methods other than serum retinol alone, such as isotope dilution, is required to accurately assess VA status, evaluate interventions, and investigate the interaction of VA status and infection. This trial was registered at clinicaltrials.gov as NCT01814891.
                Bookmark

                Author and article information

                Journal
                Plants (Basel)
                Plants (Basel, Switzerland)
                MDPI AG
                2223-7747
                2223-7747
                Apr 01 2022
                : 11
                : 7
                Affiliations
                [1 ] Department of Crop Production and Soil Science, Ladoke Akintola University of Technology, Ogbomoso PMB 4000, Nigeria.
                [2 ] International Institute of Tropical Agriculture, Oyo Road, Ibadan PMB 5320, Nigeria.
                Article
                plants11070964
                10.3390/plants11070964
                9003292
                35406944
                4fa30454-9f28-4e01-8121-2bd8600ecaea
                History

                Zea mays L.,line × tester design,provitamin A
                Zea mays L., line × tester design, provitamin A

                Comments

                Comment on this article