7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Investigating diagnostic potential of long non-coding RNAs in head and neck squamous cell carcinoma using TCGA database and clinical specimens

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Head and neck squamous cell carcinoma (HNSCC) is a prevalent and prognostically challenging cancer worldwide. The role of long non-coding RNAs (lncRNAs) in cancer regulation is progressively being understood. This study aims to identify lncRNAs with diagnostic potential as biomarkers for HNSCC. Statistical analysis was performed on expression data from the Cancer Genome Atlas (TCGA) database to identify potential lncRNAs associated with HNSCC. Four selected lncRNAs were validated using real-time quantitative reverse transcription polymerase chain reaction and correlated with clinical factors. Functional roles were further investigated. A total of 488 differentially expressed lncRNAs were identified in TCGA-HNSC. After rigorous evaluation based on p-values, survival analysis, and ROC analysis, 24 lncRNAs were prioritized for additional investigation. LINC00460, LINC00941, CTC-241F20.4, and RP11-357H14.17 were established as candidate diagnostic biomarkers. These lncRNAs exhibited elevated expression in HNSCC tissues and were associated with poor prognosis. Combining them showed high diagnostic accuracy. Notably, LINC00460 and CTC-241F20.4 demonstrated a significant elevation in the advanced stages of HNSCC. We constructed an lncRNA-mRNA regulatory network, and the array of significant regulatory pathways identified included focal adhesion, regulation of epithelial cell migration, and others. Additionally, these lncRNAs were found to influence immune responses by modulating immune cell infiltration in the HNSCC microenvironment. Our research indicates that LINC00460, LINC00941, RP11-357H14.17, and CTC-241F20.4 may have diagnostic and prognostic importance in HNSCC. Furthermore, we have gained insights into their potential functional roles, particularly about immune responses and interactions in the microenvironment.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries

          This article provides an update on the global cancer burden using the GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer. Worldwide, an estimated 19.3 million new cancer cases (18.1 million excluding nonmelanoma skin cancer) and almost 10.0 million cancer deaths (9.9 million excluding nonmelanoma skin cancer) occurred in 2020. Female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung (11.4%), colorectal (10.0 %), prostate (7.3%), and stomach (5.6%) cancers. Lung cancer remained the leading cause of cancer death, with an estimated 1.8 million deaths (18%), followed by colorectal (9.4%), liver (8.3%), stomach (7.7%), and female breast (6.9%) cancers. Overall incidence was from 2-fold to 3-fold higher in transitioned versus transitioning countries for both sexes, whereas mortality varied <2-fold for men and little for women. Death rates for female breast and cervical cancers, however, were considerably higher in transitioning versus transitioned countries (15.0 vs 12.8 per 100,000 and 12.4 vs 5.2 per 100,000, respectively). The global cancer burden is expected to be 28.4 million cases in 2040, a 47% rise from 2020, with a larger increase in transitioning (64% to 95%) versus transitioned (32% to 56%) countries due to demographic changes, although this may be further exacerbated by increasing risk factors associated with globalization and a growing economy. Efforts to build a sustainable infrastructure for the dissemination of cancer prevention measures and provision of cancer care in transitioning countries is critical for global cancer control.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            Pan-cancer Immunogenomic Analyses Reveal Genotype-Immunophenotype Relationships and Predictors of Response to Checkpoint Blockade.

            The Cancer Genome Atlas revealed the genomic landscapes of human cancers. In parallel, immunotherapy is transforming the treatment of advanced cancers. Unfortunately, the majority of patients do not respond to immunotherapy, making the identification of predictive markers and the mechanisms of resistance an area of intense research. To increase our understanding of tumor-immune cell interactions, we characterized the intratumoral immune landscapes and the cancer antigenomes from 20 solid cancers and created The Cancer Immunome Atlas (https://tcia.at/). Cellular characterization of the immune infiltrates showed that tumor genotypes determine immunophenotypes and tumor escape mechanisms. Using machine learning, we identified determinants of tumor immunogenicity and developed a scoring scheme for the quantification termed immunophenoscore. The immunophenoscore was a superior predictor of response to anti-cytotoxic T lymphocyte antigen-4 (CTLA-4) and anti-programmed cell death protein 1 (anti-PD-1) antibodies in two independent validation cohorts. Our findings and this resource may help inform cancer immunotherapy and facilitate the development of precision immuno-oncology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gene regulation by long non-coding RNAs and its biological functions

              Evidence accumulated over the past decade shows that long non-coding RNAs (lncRNAs) are widely expressed and have key roles in gene regulation. Recent studies have begun to unravel how the biogenesis of lncRNAs is distinct from that of mRNAs and is linked with their specific subcellular localizations and functions. Depending on their localization and their specific interactions with DNA, RNA and proteins, lncRNAs can modulate chromatin function, regulate the assembly and function of membraneless nuclear bodies, alter the stability and translation of cytoplasmic mRNAs and interfere with signalling pathways. Many of these functions ultimately affect gene expression in diverse biological and physiopathological contexts, such as in neuronal disorders, immune responses and cancer. Tissue-specific and condition-specific expression patterns suggest that lncRNAs are potential biomarkers and provide a rationale to target them clinically. In this Review, we discuss the mechanisms of lncRNA biogenesis, localization and functions in transcriptional, post-transcriptional and other modes of gene regulation, and their potential therapeutic applications.
                Bookmark

                Author and article information

                Contributors
                dalizheng@fjmu.edu.cn
                lincanding@fjmu.edu.cn
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                29 March 2024
                29 March 2024
                2024
                : 14
                : 7500
                Affiliations
                [1 ]Fujian Key Laboratory of Oral Diseases, Fujian Biological Materials Engineering and Technology Center of Stomatology, School and Hospital of Stomatology, Fujian Medical University, ( https://ror.org/050s6ns64) 88 Jiao Tong Road, Fuzhou, 350004 Fujian China
                [2 ]Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, ( https://ror.org/050s6ns64) 246 Yang Qiao Middle Road, Fuzhou, 350000 Fujian China
                Article
                57987
                10.1038/s41598-024-57987-y
                10980800
                38553620
                41a6cf43-a03d-4c67-91cd-04e95e04c3f7
                © The Author(s) 2024

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 30 October 2023
                : 24 March 2024
                Funding
                Funded by: Youth Scientific Research Subject of Fujian Provincial Health and Family Planning Commission
                Award ID: 2022QNA069
                Award Recipient :
                Funded by: National Natural Sciences Foundation of China
                Award ID: 82173180
                Award Recipient :
                Funded by: Fujian Medical Innovation Grant
                Award ID: 2018-CXB-13
                Award Recipient :
                Categories
                Article
                Custom metadata
                © Springer Nature Limited 2024

                Uncategorized
                lncrna,tcga,hnscc,biomarker,cancer genomics,head and neck cancer,tumour biomarkers
                Uncategorized
                lncrna, tcga, hnscc, biomarker, cancer genomics, head and neck cancer, tumour biomarkers

                Comments

                Comment on this article