235
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The integrative future of taxonomy

      , , ,
      Frontiers in Zoology
      Springer Science and Business Media LLC

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background Taxonomy is the biological discipline that identifies, describes, classifies and names extant and extinct species and other taxa. Nowadays, species taxonomy is confronted with the challenge to fully incorporate new theory, methods and data from disciplines that study the origin, limits and evolution of species. Results Integrative taxonomy has been proposed as a framework to bring together these conceptual and methodological developments. Here we review perspectives for an integrative taxonomy that directly bear on what species are, how they can be discovered, and how much diversity is on Earth. Conclusions We conclude that taxonomy needs to be pluralistic to improve species discovery and description, and to develop novel protocols to produce the much-needed inventory of life in a reasonable time. To cope with the large number of candidate species revealed by molecular studies of eukaryotes, we propose a classification scheme for those units that will facilitate the subsequent assembly of data sets for the formal description of new species under the Linnaean system, and will ultimately integrate the activities of taxonomists and molecular biologists.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: not found

          Cryptic species as a window on diversity and conservation.

          The taxonomic challenge posed by cryptic species (two or more distinct species classified as a single species) has been recognized for nearly 300 years, but the advent of relatively inexpensive and rapid DNA sequencing has given biologists a new tool for detecting and differentiating morphologically similar species. Here, we synthesize the literature on cryptic and sibling species and discuss trends in their discovery. However, a lack of systematic studies leaves many questions open, such as whether cryptic species are more common in particular habitats, latitudes or taxonomic groups. The discovery of cryptic species is likely to be non-random with regard to taxon and biome and, hence, could have profound implications for evolutionary theory, biogeography and conservation planning.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Linkage disequilibrium--understanding the evolutionary past and mapping the medical future.

            Linkage disequilibrium--the nonrandom association of alleles at different loci--is a sensitive indicator of the population genetic forces that structure a genome. Because of the explosive growth of methods for assessing genetic variation at a fine scale, evolutionary biologists and human geneticists are increasingly exploiting linkage disequilibrium in order to understand past evolutionary and demographic events, to map genes that are associated with quantitative characters and inherited diseases, and to understand the joint evolution of linked sets of genes. This article introduces linkage disequilibrium, reviews the population genetic processes that affect it and describes some of its uses. At present, linkage disequilibrium is used much more extensively in the study of humans than in non-humans, but that is changing as technological advances make extensive genomic studies feasible in other species.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              New developments in museum-based informatics and applications in biodiversity analysis.

              Information from natural history collections (NHCs) about the diversity, taxonomy and historical distributions of species worldwide is becoming increasingly available over the Internet. In light of this relatively new and rapidly increasing resource, we critically review its utility and limitations for addressing a diverse array of applications. When integrated with spatial environmental data, NHC data can be used to study a broad range of topics, from aspects of ecological and evolutionary theory, to applications in conservation, agriculture and human health. There are challenges inherent to using NHC data, such as taxonomic inaccuracies and biases in the spatial coverage of data, which require consideration. Promising research frontiers include the integration of NHC data with information from comparative genomics and phylogenetics, and stronger connections between the environmental analysis of NHC data and experimental and field-based tests of hypotheses.
                Bookmark

                Author and article information

                Journal
                Frontiers in Zoology
                Front Zool
                Frontiers in Zoology
                Springer Science and Business Media LLC
                1742-9994
                2010
                2010
                : 7
                : 1
                : 16
                Article
                10.1186/1742-9994-7-16
                d4207431-54df-4389-a6ee-ee9b41515ba4
                © 2010
                History

                Comments

                Comment on this article