63
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Vitamin E: function and metabolism

      1 , 2
      The FASEB Journal
      Wiley

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although vitamin E has been known as an essential nutrient for reproduction since 1922, we are far from understanding the mechanisms of its physiological functions. Vitamin E is the term for a group of tocopherols and tocotrienols, of which alpha-tocopherol has the highest biological activity. Due to the potent antioxidant properties of tocopherols, the impact of alpha-tocopherol in the prevention of chronic diseases believed to be associated with oxidative stress has often been studied, and beneficial effects have been demonstrated. Recent observations that the alpha-tocopherol transfer protein in the liver specifically sorts out RRR-alpha-tocopherol from all incoming tocopherols for incorporation into plasma lipoproteins, and that alpha-tocopherol has signaling functions in vascular smooth muscle cells that cannot be exerted by other forms of tocopherol with similar antioxidative properties, have raised interest in the roles of vitamin E beyond its antioxidative function. Also, gamma-tocopherol might have functions apart from being an antioxidant. It is a nucleophile able to trap electrophilic mutagens in lipophilic compartments and generates a metabolite that facilitates natriuresis. The metabolism of vitamin E is equally unclear. Excess alpha-tocopherol is converted into alpha-CEHC and excreted in the urine. Other tocopherols, like gamma- and delta-tocopherol, are almost quantitatively degraded and excreted in the urine as the corresponding CEHCs. All rac alpha-tocopherol compared to RRR-alpha-tocopherol is preferentially degraded to alpha-CEHC. Thus, there must be a specific, molecular role of RRR-alpha-tocopherol that is regulated by a system that sorts, distributes, and degrades the different forms of vitamin E, but has not yet been identified. In this article we try to summarize current knowledge on the function of vitamin E, with emphasis on its antioxidant vs. other properties, the preference of the organism for RRR-alpha-tocopherol, and its metabolism to CEHCs.

          Related collections

          Most cited references91

          • Record: found
          • Abstract: found
          • Article: not found

          The chemistry and antioxidant properties of tocopherols and tocotrienols.

          This article is a review of the fundamental chemistry of the tocopherols and tocotrienols relevant to their antioxidant action. Despite the general agreement that alpha-tocopherol is the most efficient antioxidant and vitamin E homologue in vivo, there was always a considerable discrepancy in its "absolute" and "relative" antioxidant effectiveness in vitro, especially when compared to gamma-tocopherol. Many chemical, physical, biochemical, physicochemical, and other factors seem responsible for the observed discrepancy between the relative antioxidant potencies of the tocopherols in vivo and in vitro. This paper aims at highlighting some possible reasons for the observed differences between the tocopherols (alpha-, beta-, gamma-, and delta-) in relation to their interactions with the important chemical species involved in lipid peroxidation, specifically trace metal ions, singlet oxygen, nitrogen oxides, and antioxidant synergists. Although literature reports related to the chemistry of the tocotrienols are quite meager, they also were included in the discussion in virtue of their structural and functional resemblance to the tocopherols.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Vitamin E consumption and the risk of coronary heart disease in men.

            The oxidative modification of low-density lipoproteins increases their incorporation into the arterial intima, an essential step in atherogenesis. Although dietary antioxidants, such as vitamin C, carotene, and vitamin E, have been hypothesized to prevent coronary heart disease, prospective epidemiologic data are sparse. In 1986, 39,910 U.S. male health professionals 40 to 75 years of age who were free of diagnosed coronary heart disease, diabetes, and hypercholesterolemia completed detailed dietary questionnaires that assessed their usual intake of vitamin C, carotene, and vitamin E in addition to other nutrients. During four years of follow-up, we documented 667 cases of coronary disease. After controlling for age and several coronary risk factors, we observed a lower risk of coronary disease among men with higher intakes of vitamin E (P for trend = 0.003). For men consuming more than 60 IU per day of vitamin E, the multivariate relative risk was 0.64 (95 percent confidence interval, 0.49 to 0.83) as compared with those consuming less than 7.5 IU per day. As compared with men who did not take vitamin E supplements, men who took at least 100 IU per day for at least two years had a multivariate relative risk of coronary disease of 0.63 (95 percent confidence interval, 0.47 to 0.84). Carotene intake was not associated with a lower risk of coronary disease among those who had never smoked, but it was inversely associated with the risk among current smokers (relative risk, 0.30; 95 percent confidence interval, 0.11 to 0.82) and former smokers (relative risk, 0.60; 95 percent confidence interval, 0.38 to 0.94). In contrast, a high intake of vitamin C was not associated with a lower risk of coronary disease. These data do not prove a causal relation, but they provide evidence of an association between a high intake of vitamin E and a lower risk of coronary heart disease in men. Public policy recommendations with regard to the use of vitamin E supplements should await the results of additional studies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Vitamin E consumption and the risk of coronary disease in women.

              Interest in the antioxidant vitamin E as a possible protective nutrient against coronary disease has intensified with the recognition that oxidized low-density lipoprotein may be involved in atherogenesis. In 1980, 87,245 female nurses 34 to 59 years of age who were free of diagnosed cardiovascular disease and cancer completed dietary questionnaires that assessed their consumption of a wide range of nutrients, including vitamin E. During follow-up of up to eight years (679,485 person-years) that was 97 percent complete, we documented 552 cases of major coronary disease (437 nonfatal myocardial infarctions and 115 deaths due to coronary disease). As compared with women in the lowest fifth of the cohort with respect to vitamin E intake, those in the top fifth had a relative risk of major coronary disease of 0.66 (95 percent confidence interval, 0.50 to 0.87) after adjustment for age and smoking. Further adjustment for a variety of other coronary risk factors and nutrients, including other antioxidants, had little effect on the results. Most of the variability in intake and reduction in risk was attributable to vitamin E consumed as supplements. Women who took vitamin E supplements for short periods had little apparent benefit, but those who took them for more than two years had a relative risk of major coronary disease of 0.59 (95 percent confidence interval, 0.38 to 0.91) after adjustment for age, smoking status, risk factors for coronary disease, and use of other antioxidant nutrients (including multi-vitamins). Although these prospective data do not prove a cause-and-effect relation, they suggest that among middle-aged women the use of vitamin E supplements is associated with a reduced risk of coronary heart disease. Randomized trials of vitamin E in the primary and secondary prevention of coronary disease are being conducted; public policy recommendations about the widespread use of vitamin E should await the results of these trials.
                Bookmark

                Author and article information

                Journal
                The FASEB Journal
                The FASEB Journal
                Wiley
                0892-6638
                1530-6860
                July 1999
                July 1999
                : 13
                : 10
                : 1145-1155
                Affiliations
                [1 ]German Institute of Human Nutrition, Bergholz-Rehbrücke, Germany; and
                [2 ]Department of Nutrition and Food Management, Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97330, USA
                Article
                10.1096/fasebj.13.10.1145
                4c69a7ec-3312-46fd-830f-5f350119d913
                © 1999
                History

                Comments

                Comment on this article