20
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Amphetamine Sensitization Alters Reward Processing in the Human Striatum and Amygdala

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dysregulation of mesolimbic dopamine transmission is implicated in a number of psychiatric illnesses characterised by disruption of reward processing and goal-directed behaviour, including schizophrenia, drug addiction and impulse control disorders associated with chronic use of dopamine agonists. Amphetamine sensitization (AS) has been proposed to model the development of this aberrant dopamine signalling and the subsequent dysregulation of incentive motivational processes. However, in humans the effects of AS on the dopamine-sensitive neural circuitry associated with reward processing remains unclear. Here we describe the effects of acute amphetamine administration, following a sensitising dosage regime, on blood oxygen level dependent (BOLD) signal in dopaminoceptive brain regions during a rewarded gambling task performed by healthy volunteers. Using a randomised, double-blind, parallel-groups design, we found clear evidence for sensitization to the subjective effects of the drug, while rewarded reaction times were unchanged. Repeated amphetamine exposure was associated with reduced dorsal striatal BOLD signal during decision making, but enhanced ventromedial caudate activity during reward anticipation. The amygdala BOLD response to reward outcomes was blunted following repeated amphetamine exposure. Positive correlations between subjective sensitization and changes in anticipation- and outcome-related BOLD signal were seen for the caudate nucleus and amygdala, respectively. These data show for the first time in humans that AS changes the functional impact of acute stimulant exposure on the processing of reward-related information within dopaminoceptive regions. Our findings accord with pathophysiological models which implicate aberrant dopaminergic modulation of striatal and amygdala activity in psychosis and drug-related compulsive disorders.

          Related collections

          Most cited references140

          • Record: found
          • Abstract: found
          • Article: not found

          Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain.

          An anatomical parcellation of the spatially normalized single-subject high-resolution T1 volume provided by the Montreal Neurological Institute (MNI) (D. L. Collins et al., 1998, Trans. Med. Imag. 17, 463-468) was performed. The MNI single-subject main sulci were first delineated and further used as landmarks for the 3D definition of 45 anatomical volumes of interest (AVOI) in each hemisphere. This procedure was performed using a dedicated software which allowed a 3D following of the sulci course on the edited brain. Regions of interest were then drawn manually with the same software every 2 mm on the axial slices of the high-resolution MNI single subject. The 90 AVOI were reconstructed and assigned a label. Using this parcellation method, three procedures to perform the automated anatomical labeling of functional studies are proposed: (1) labeling of an extremum defined by a set of coordinates, (2) percentage of voxels belonging to each of the AVOI intersected by a sphere centered by a set of coordinates, and (3) percentage of voxels belonging to each of the AVOI intersected by an activated cluster. An interface with the Statistical Parametric Mapping package (SPM, J. Ashburner and K. J. Friston, 1999, Hum. Brain Mapp. 7, 254-266) is provided as a freeware to researchers of the neuroimaging community. We believe that this tool is an improvement for the macroscopical labeling of activated area compared to labeling assessed using the Talairach atlas brain in which deformations are well known. However, this tool does not alleviate the need for more sophisticated labeling strategies based on anatomical or cytoarchitectonic probabilistic maps.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The neural basis of drug craving: an incentive-sensitization theory of addiction.

            This paper presents a biopsychological theory of drug addiction, the 'Incentive-Sensitization Theory'. The theory addresses three fundamental questions. The first is: why do addicts crave drugs? That is, what is the psychological and neurobiological basis of drug craving? The second is: why does drug craving persist even after long periods of abstinence? The third is whether 'wanting' drugs (drug craving) is attributable to 'liking' drugs (to the subjective pleasurable effects of drugs)? The theory posits the following. (1) Addictive drugs share the ability to enhance mesotelencephalic dopamine neurotransmission. (2) One psychological function of this neural system is to attribute 'incentive salience' to the perception and mental representation of events associated with activation of the system. Incentive salience is a psychological process that transforms the perception of stimuli, imbuing them with salience, making them attractive, 'wanted', incentive stimuli. (3) In some individuals the repeated use of addictive drugs produces incremental neuroadaptations in this neural system, rendering it increasingly and perhaps permanently, hypersensitive ('sensitized') to drugs and drug-associated stimuli. The sensitization of dopamine systems is gated by associative learning, which causes excessive incentive salience to be attributed to the act of drug taking and to stimuli associated with drug taking. It is specifically the sensitization of incentive salience, therefore, that transforms ordinary 'wanting' into excessive drug craving. (4) It is further proposed that sensitization of the neural systems responsible for incentive salience ('for wanting') can occur independently of changes in neural systems that mediate the subjective pleasurable effects of drugs (drug 'liking') and of neural systems that mediate withdrawal. Thus, sensitization of incentive salience can produce addictive behavior (compulsive drug seeking and drug taking) even if the expectation of drug pleasure or the aversive properties of withdrawal are diminished and even in the face of strong disincentives, including the loss of reputation, job, home and family. We review evidence for this view of addiction and discuss its implications for understanding the psychology and neurobiology of addiction.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neurocircuitry of addiction.

              Drug addiction is a chronically relapsing disorder that has been characterized by (1) compulsion to seek and take the drug, (2) loss of control in limiting intake, and (3) emergence of a negative emotional state (eg, dysphoria, anxiety, irritability) reflecting a motivational withdrawal syndrome when access to the drug is prevented. Drug addiction has been conceptualized as a disorder that involves elements of both impulsivity and compulsivity that yield a composite addiction cycle composed of three stages: 'binge/intoxication', 'withdrawal/negative affect', and 'preoccupation/anticipation' (craving). Animal and human imaging studies have revealed discrete circuits that mediate the three stages of the addiction cycle with key elements of the ventral tegmental area and ventral striatum as a focal point for the binge/intoxication stage, a key role for the extended amygdala in the withdrawal/negative affect stage, and a key role in the preoccupation/anticipation stage for a widely distributed network involving the orbitofrontal cortex-dorsal striatum, prefrontal cortex, basolateral amygdala, hippocampus, and insula involved in craving and the cingulate gyrus, dorsolateral prefrontal, and inferior frontal cortices in disrupted inhibitory control. The transition to addiction involves neuroplasticity in all of these structures that may begin with changes in the mesolimbic dopamine system and a cascade of neuroadaptations from the ventral striatum to dorsal striatum and orbitofrontal cortex and eventually dysregulation of the prefrontal cortex, cingulate gyrus, and extended amygdala. The delineation of the neurocircuitry of the evolving stages of the addiction syndrome forms a heuristic basis for the search for the molecular, genetic, and neuropharmacological neuroadaptations that are key to vulnerability for developing and maintaining addiction.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                9 April 2014
                : 9
                : 4
                : e93955
                Affiliations
                [1 ]Cognition, Schizophrenia & Imaging Laboratory, Department of Psychosis Studies, the Institute of Psychiatry, King’s College London, London, United Kingdom
                [2 ]Department of Neuroimaging, Centre for Neuroimaging Sciences, the Institute of Psychiatry, King’s College London, London, United Kingdom
                [3 ]Oxleas NHS Foundation Trust, London, United Kingdom
                [4 ]Laboratory for Social and Neural Systems Research, Department of Economics, University of Zürich, Zürich, Switzerland
                [5 ]Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, United Kingdom
                [6 ]Department of Psychosis Studies, the Institute of Psychiatry, King’s College London, London, United Kingdom
                [7 ]The National Psychosis Unit, South London, and Maudsley NHS Foundation Trust, London, United Kingdom
                Duke University Medical Center, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: OO’D RMM SSS. Performed the experiments: OO’D. Analyzed the data: OO’D DJ DKT AA KES RMM SSS. Wrote the paper: OO’D DJ DKT KES SSS.

                Article
                PONE-D-13-42725
                10.1371/journal.pone.0093955
                3981726
                24717936
                5e3b0275-1d9b-47cd-bcf8-6cd6144c06e3
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 18 October 2013
                : 10 March 2014
                Page count
                Pages: 11
                Funding
                This work was supported by a Wellcome grant. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Neuroscience
                Cognitive Science
                Cognition
                Memory
                Cognitive Psychology
                Attention
                Learning
                Reasoning
                Behavioral Neuroscience
                Cognitive Neuroscience
                Learning and Memory
                Neuroimaging
                Neuropsychology
                Psychology
                Behavior
                Habits
                Human Performance
                Computer and Information Sciences
                Neural Networks
                Medicine and Health Sciences
                Mental Health and Psychiatry
                Substance-Related Disorders
                Substance Abuse
                Psychoses
                Schizophrenia
                Neurology
                Neurobiology of Disease and Regeneration

                Uncategorized
                Uncategorized

                Comments

                Comment on this article