Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
123
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Discovery of human zinc deficiency: its impact on human health and disease.

      Advances in nutrition (Bethesda, Md.)
      Cognition Disorders, etiology, Deficiency Diseases, complications, metabolism, Growth Disorders, Hepatolenticular Degeneration, drug therapy, Humans, Immune System, Macular Degeneration, Nutritional Requirements, Trace Elements, deficiency, therapeutic use, Zinc

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The essentiality of zinc in humans was established in 1963. During the past 50 y, tremendous advances in both clinical and basic sciences of zinc metabolism in humans have been observed. The major factor contributing to zinc deficiency is high phytate-containing cereal protein intake in the developing world, and nearly 2 billion subjects may be zinc deficient. Conditioned deficiency of zinc has been observed in patients with malabsorption syndrome, liver disease, chronic renal disease, sickle cell disease, and other chronic illnesses. Major clinical problems resulting from zinc deficiency in humans include growth retardation; cell-mediated immune dysfunction, and cognitive impairment. In the Middle East, zinc-deficient dwarfs did not live beyond the age of 25 y, and they died because of intercurrent infections. In 1963, we knew of only 3 enzymes that required zinc for their activities, but now we know of >300 enzymes and >1000 transcription factors that are known to require zinc for their activities. Zinc is a second messenger of immune cells, and intracellular free zinc in these cells participate in signaling events. Zinc has been very successfully used as a therapeutic modality for the management of acute diarrhea in children, Wilson's disease, the common cold and for the prevention of blindness in patients with age-related dry type of macular degeneration and is very effective in decreasing the incidence of infection in the elderly. Zinc not only modulates cell-mediated immunity but is also an antioxidant and anti-inflammatory agent.

          Related collections

          Most cited references92

          • Record: found
          • Abstract: found
          • Article: not found

          Zinc and immune function: the biological basis of altered resistance to infection.

          Zinc is known to play a central role in the immune system, and zinc-deficient persons experience increased susceptibility to a variety of pathogens. The immunologic mechanisms whereby zinc modulates increased susceptibility to infection have been studied for several decades. It is clear that zinc affects multiple aspects of the immune system, from the barrier of the skin to gene regulation within lymphocytes. Zinc is crucial for normal development and function of cells mediating nonspecific immunity such as neutrophils and natural killer cells. Zinc deficiency also affects development of acquired immunity by preventing both the outgrowth and certain functions of T lymphocytes such as activation, Th1 cytokine production, and B lymphocyte help. Likewise, B lymphocyte development and antibody production, particularly immunoglobulin G, is compromised. The macrophage, a pivotal cell in many immunologic functions, is adversely affected by zinc deficiency, which can dysregulate intracellular killing, cytokine production, and phagocytosis. The effects of zinc on these key immunologic mediators is rooted in the myriad roles for zinc in basic cellular functions such as DNA replication, RNA transcription, cell division, and cell activation. Apoptosis is potentiated by zinc deficiency. Zinc also functions as an antioxidant and can stabilize membranes. This review explores these aspects of zinc biology of the immune system and attempts to provide a biological basis for the altered host resistance to infections observed during zinc deficiency and supplementation.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A Randomized, Placebo-Controlled, Clinical Trial of High-Dose Supplementation With Vitamins C and E, Beta Carotene, and Zinc for Age-Related Macular Degeneration and Vision Loss

            (2001)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The role of zinc in growth and cell proliferation.

              The inhibition of growth is a cardinal symptom of zinc deficiency. In animals fed a zinc-inadequate diet, both food intake and growth are reduced within 4-5 d. Despite the concomitant reduction in food intake and growth, reduced energy intake is not the limiting factor in growth, because force-feeding a zinc-inadequate diet to animals fails to maintain growth. Hence, food intake and growth appear to be regulated by zinc through independent, although well coordinated, mechanisms. Despite the long-term study of zinc metabolism, the first limiting role of zinc in cell proliferation remains undefined. Zinc participates in the regulation of cell proliferation in several ways; it is essential to enzyme systems that influence cell division and proliferation. Removing zinc from the extracellular milieu results in decreased activity of deoxythymidine kinase and reduced levels of adenosine(5')tetraphosphate(5')-adenosine. Hence, zinc may directly regulate DNA synthesis through these systems. Zinc also influences hormonal regulation of cell division. Specifically, the pituitary growth hormone (GH)-insulin-like growth factor-I (IGF-I) axis is responsive to zinc status. Both increased and decreased circulating concentrations of GH have been observed in zinc deficiency, although circulating IGF-I concentrations are consistently decreased. However, growth failure is not reversed by maintaining either GH or IGF-I levels through exogenous administration, which suggests the defect occurs in hormone signaling. Zinc appears to be essential for IGF-I induction of cell proliferation; the site of regulation is postreceptor binding. Overall, the evidence suggests that reduced zinc availability affects membrane signaling systems and intracellular second messengers that coordinate cell proliferation in response to IGF-I.
                Bookmark

                Author and article information

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content398

                Cited by246

                Most referenced authors670