35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An electrocorticographic BCI using code-based VEP for control in video applications: a single-subject study

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A brain-computer-interface (BCI) allows the user to control a device or software with brain activity. Many BCIs rely on visual stimuli with constant stimulation cycles that elicit steady-state visual evoked potentials (SSVEP) in the electroencephalogram (EEG). This EEG response can be generated with a LED or a computer screen flashing at a constant frequency, and similar EEG activity can be elicited with pseudo-random stimulation sequences on a screen (code-based BCI). Using electrocorticography (ECoG) instead of EEG promises higher spatial and temporal resolution and leads to more dominant evoked potentials due to visual stimulation. This work is focused on BCIs based on visual evoked potentials (VEP) and its capability as a continuous control interface for augmentation of video applications. One 35 year old female subject with implanted subdural grids participated in the study. The task was to select one out of four visual targets, while each was flickering with a code sequence. After a calibration run including 200 code sequences, a linear classifier was used during an evaluation run to identify the selected visual target based on the generated code-based VEPs over 20 trials. Multiple ECoG buffer lengths were tested and the subject reached a mean online classification accuracy of 99.21% for a window length of 3.15 s. Finally, the subject performed an unsupervised free run in combination with visual feedback of the current selection. Additionally, an algorithm was implemented that allowed to suppress false positive selections and this allowed the subject to start and stop the BCI at any time. The code-based BCI system attained very high online accuracy, which makes this approach very promising for control applications where a continuous control signal is needed.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Cortical activity during motor execution, motor imagery, and imagery-based online feedback.

          Imagery of motor movement plays an important role in learning of complex motor skills, from learning to serve in tennis to perfecting a pirouette in ballet. What and where are the neural substrates that underlie motor imagery-based learning? We measured electrocorticographic cortical surface potentials in eight human subjects during overt action and kinesthetic imagery of the same movement, focusing on power in "high frequency" (76-100 Hz) and "low frequency" (8-32 Hz) ranges. We quantitatively establish that the spatial distribution of local neuronal population activity during motor imagery mimics the spatial distribution of activity during actual motor movement. By comparing responses to electrocortical stimulation with imagery-induced cortical surface activity, we demonstrate the role of primary motor areas in movement imagery. The magnitude of imagery-induced cortical activity change was approximately 25% of that associated with actual movement. However, when subjects learned to use this imagery to control a computer cursor in a simple feedback task, the imagery-induced activity change was significantly augmented, even exceeding that of overt movement.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            How many people are able to control a P300-based brain-computer interface (BCI)?

            An EEG-based brain-computer system can be used to control external devices such as computers, wheelchairs or Virtual Environments. One of the most important applications is a spelling device to aid severely disabled individuals with communication, for example people disabled by amyotrophic lateral sclerosis (ALS). P300-based BCI systems are optimal for spelling characters with high speed and accuracy, as compared to other BCI paradigms such as motor imagery. In this study, 100 subjects tested a P300-based BCI system to spell a 5-character word with only 5 min of training. EEG data were acquired while the subject looked at a 36-character matrix to spell the word WATER. Two different versions of the P300 speller were used: (i) the row/column speller (RC) that flashes an entire column or row of characters and (ii) a single character speller (SC) that flashes each character individually. The subjects were free to decide which version to test. Nineteen subjects opted to test both versions. The BCI system classifier was trained on the data collected for the word WATER. During the real-time phase of the experiment, the subject spelled the word LUCAS, and was provided with the classifier selection accuracy after each of the five letters. Additionally, subjects filled out a questionnaire about age, sex, education, sleep duration, working duration, cigarette consumption, coffee consumption, and level of disturbance that the flashing characters produced. 72.8% (N=81) of the subjects were able to spell with 100% accuracy in the RC paradigm and 55.3% (N=38) of the subjects spelled with 100% accuracy in the SC paradigm. Less than 3% of the subjects did not spell any character correctly. People who slept less than 8h performed significantly better than other subjects. Sex, education, working duration, and cigarette and coffee consumption were not statistically related to differences in accuracy. The disturbance of the flashing characters was rated with a median score of 1 on a scale from 1 to 5 (1, not disturbing; 5, highly disturbing). This study shows that high spelling accuracy can be achieved with the P300 BCI system using approximately 5 min of training data for a large number of non-disabled subjects, and that the RC paradigm is superior to the SC paradigm. 89% of the 81 RC subjects were able to spell with accuracy 80-100%. A similar study using a motor imagery BCI with 99 subjects showed that only 19% of the subjects were able to achieve accuracy of 80-100%. These large differences in accuracy suggest that with limited amounts of training data the P300-based BCI is superior to the motor imagery BCI. Overall, these results are very encouraging and a similar study should be conducted with subjects who have ALS to determine if their accuracy levels are similar.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              An Electrocorticographic Brain Interface in an Individual with Tetraplegia

              Brain-computer interface (BCI) technology aims to help individuals with disability to control assistive devices and reanimate paralyzed limbs. Our study investigated the feasibility of an electrocorticography (ECoG)-based BCI system in an individual with tetraplegia caused by C4 level spinal cord injury. ECoG signals were recorded with a high-density 32-electrode grid over the hand and arm area of the left sensorimotor cortex. The participant was able to voluntarily activate his sensorimotor cortex using attempted movements, with distinct cortical activity patterns for different segments of the upper limb. Using only brain activity, the participant achieved robust control of 3D cursor movement. The ECoG grid was explanted 28 days post-implantation with no adverse effect. This study demonstrates that ECoG signals recorded from the sensorimotor cortex can be used for real-time device control in paralyzed individuals.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Syst Neurosci
                Front Syst Neurosci
                Front. Syst. Neurosci.
                Frontiers in Systems Neuroscience
                Frontiers Media S.A.
                1662-5137
                07 August 2014
                2014
                : 8
                : 139
                Affiliations
                [1] 1Guger Technologies OG Graz, Austria
                [2] 2g.tec medical engineering GmbH Schiedlberg, Austria
                [3] 3Department of Computational Perception, Johannes Kepler University Linz, Austria
                [4] 4Department of Neurosurgery, Asahikawa Medical University Asahikawa, Japan
                Author notes

                Edited by: Mikhail Lebedev, Duke University, USA

                Reviewed by: Duk Shin, Tokyo Institute of Technology, Japan; Martin Spüler, University of Tübingen, Germany

                *Correspondence: Christoph Guger, g.tec medical engineering GmbH, Sierningstrasse 14, Schiedlberg 4521, Austria e-mail: guger@ 123456gtec.at

                This article was submitted to the journal Frontiers in Systems Neuroscience.

                Article
                10.3389/fnsys.2014.00139
                4124519
                5101cd7c-5a24-41f9-a3c7-3314f8d64644
                Copyright © 2014 Kapeller, Kamada, Ogawa, Prueckl, Scharinger and Guger.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 31 May 2014
                : 17 July 2014
                Page count
                Figures: 5, Tables: 0, Equations: 3, References: 37, Pages: 8, Words: 6589
                Categories
                Neuroscience
                Original Research Article

                Neurosciences
                electrocorticography,brain-computer-interface,code-based stimulation,vep,augmented control

                Comments

                Comment on this article