99
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L)

      Cell
      14-3-3 Proteins, Amino Acid Sequence, Carrier Proteins, metabolism, Cell Death, physiology, Cell Survival, Cytosol, Dimerization, Interleukin-3, pharmacology, Membranes, Models, Biological, Molecular Sequence Data, Phosphorylation, Protein Binding, Proteins, Proto-Oncogene Proteins, Proto-Oncogene Proteins c-bcl-2, Serine, Signal Transduction, Tyrosine 3-Monooxygenase, bcl-Associated Death Protein, bcl-X Protein

      Read this article at

      ScienceOpenPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Extracellular survival factors alter a cell's susceptibility to apoptosis, often through posttranslational mechanisms. However, no consistent relationship has been established between such survival signals and the BCL-2 family, where the balance of death agonists versus antagonists determines susceptibility. One distant member, BAD, heterodimerizes with BCL-X(L) or BCL-2, neutralizing their protective effect and promoting cell death. In the presence of survival factor IL-3, cells phosphorylated BAD on two serine residues embedded in 14-3-3 consensus binding sites. Only the nonphosphorylated BAD heterodimerized with BCL-X(L) at membrane sites to promote cell death. Phosphorylated BAD was sequestered in the cytosol bound to 14-3-3. Substitution of serine phosphorylation sites further enhanced BAD's death-promoting activity. The rapid phosphorylation of BAD following IL-3 connects a proximal survival signal with the BCL-2 family, modulating this checkpoint for apoptosis.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells.

          A common feature of follicular lymphoma, the most prevalent haematological malignancy in humans, is a chromosome translocation (t(14;18] that has coupled the immunoglobulin heavy chain locus to a chromosome 18 gene denoted bcl-2. By analogy with the translocated c-myc oncogene in other B-lymphoid tumours bcl-2 is a candidate oncogene, but no biological effects of bcl-2 have yet been reported. To test whether bcl-2 influences the growth of haematopoietic cells, either alone or together with a deregulated c-myc gene, we have introduced a human bcl-2 complementary DNA using a retroviral vector into bone marrow cells from either normal or E mu-myc transgenic mice, in which B-lineage cells constitutively express the c-myc gene. Bcl-2 cooperated with c-myc to promote proliferation of B-cell precursors, some of which became tumorigenic. To determine how bcl-2 expression impinges on growth factor requirements, the gene was introduced into a lymphoid and a myeloid cell line that require interleukin 3 (IL-3). In the absence of IL-3, bcl-2 promoted the survival of the infected cells but they persisted in a G0 state, rather than proliferating. These results argue that bcl-2 provided a distinct survival signal to the cell and may contribute to neoplasia by allowing a clone to persist until other oncogenes, such as c-myc, become activated.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programed cell death

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death.

              To extend the mammalian cell death pathway, we screened for further Bcl-2 interacting proteins. Both yeast two-hybrid screening and lambda expression cloning identified a novel interacting protein, Bad, whose homology to Bcl-2 is limited to the BH1 and BH2 domains. Bad selectively dimerized with Bcl-xL as well as Bcl-2, but not with Bax, Bcl-xs, Mcl-1, A1, or itself. Bad binds more strongly to Bcl-xL than Bcl-2 in mammalian cells, and it reversed the death repressor activity of Bcl-xL, but not that of Bcl-2. When Bad dimerized with Bcl-xL, Bax was displaced and apoptosis was restored. When approximately half of Bax was heterodimerized, death was inhibited. The susceptibility of a cell to a death signal is determined by these competing dimerizations in which levels of Bad influence the effectiveness of Bcl-2 versus Bcl-xL in repressing death.
                Bookmark

                Author and article information

                Comments

                Comment on this article