22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Zasp is required for the assembly of functional integrin adhesion sites

      research-article
      ,
      The Journal of Cell Biology
      The Rockefeller University Press

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The integrin family of heterodimeric transmembrane receptors mediates cell–matrix adhesion. Integrins often localize in highly organized structures, such as focal adhesions in tissue culture and myotendinous junctions in muscles. Our RNA interference screen for genes that prevent integrin-dependent cell spreading identifies Z band alternatively spliced PDZ-motif protein ( zasp), encoding the only known Drosophila melanogaster Alp/Enigma PDZ-LIM domain protein. Zasp localizes to integrin adhesion sites and its depletion disrupts integrin adhesion sites. In tissues, Zasp colocalizes with βPS integrin in myotendinous junctions and with α-actinin in muscle Z lines. Zasp also physically interacts with α-actinin. Fly larvae lacking Zasp do not form Z lines and fail to recruit α-actinin to the Z line. At the myotendinous junction, muscles detach in zasp mutants with the onset of contractility. Finally, Zasp interacts genetically with integrins, showing that it regulates integrin function. Our observations point to an important function for Zasp in the assembly of integrin adhesion sites both in cell culture and in tissues.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          A protein trap strategy to detect GFP-tagged proteins expressed from their endogenous loci in Drosophila.

          In Drosophila, enhancer trap strategies allow rapid access to expression patterns, molecular data, and mutations in trapped genes. However, they do not give any information at the protein level, e.g., about the protein subcellular localization. Using the green fluorescent protein (GFP) as a mobile artificial exon carried by a transposable P-element, we have developed a protein trap system. We screened for individual flies, in which GFP tags full-length endogenous proteins expressed from their endogenous locus, allowing us to observe their cellular and subcellular distribution. GFP fusions are targeted to virtually any compartment of the cell. In the case of insertions in previously known genes, we observe that the subcellular localization of the fusion protein corresponds to the described distribution of the endogenous protein. The artificial GFP exon does not disturb upstream and downstream splicing events. Many insertions correspond to genes not predicted by the Drosophila Genome Project. Our results show the feasibility of a protein trap in Drosophila. GFP reveals in real time the dynamics of protein's distribution in the whole, live organism and provides useful markers for a number of cellular structures and compartments.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The LIM domain: from the cytoskeleton to the nucleus.

            First described 15 years ago as a cysteine-rich sequence that was common to a small group of homeodomain transcription factors, the LIM domain is now recognized as a tandem zinc-finger structure that functions as a modular protein-binding interface. LIM domains are present in many proteins that have diverse cellular roles as regulators of gene expression, cytoarchitecture, cell adhesion, cell motility and signal transduction. An emerging theme is that LIM proteins might function as biosensors that mediate communication between the cytosolic and the nuclear compartments.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Cell lines derived from late embryonic stages of Drosophila melanogaster.

                Bookmark

                Author and article information

                Journal
                J Cell Biol
                jcb
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                31 December 2007
                : 179
                : 7
                : 1583-1597
                Affiliations
                Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
                Author notes

                Correspondence to Frieder Schöck: frieder.schoeck@ 123456mcgill.ca

                Article
                200707045
                10.1083/jcb.200707045
                2373490
                18166658
                dc0a8c80-cd78-420b-9d1d-a7e3ed2be950
                Copyright © 2007, The Rockefeller University Press
                History
                : 5 July 2007
                : 19 November 2007
                Categories
                Research Articles
                Article

                Cell biology
                Cell biology

                Comments

                Comment on this article