104
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Strategy for Comparing the Contributions of Environmental Chemicals and Other Risk Factors to Neurodevelopment of Children

      review-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: The impact of environmental chemicals on children’s neurodevelopment is sometimes dismissed as unimportant because the magnitude of the impairments are considered to be clinically insignificant. Such a judgment reflects a failure to distinguish between individual and population risk. The population impact of a risk factor depends on both its effect size and its distribution (or incidence/prevalence).

          Objective: The objective was to develop a strategy for taking into account the distribution (or incidence/prevalence) of a risk factor, as well as its effect size, in order to estimate its population impact on neurodevelopment of children.

          Methods: The total numbers of Full-Scale IQ points lost among U.S. children 0–5 years of age were estimated for chemicals (methylmercury, organophosphate pesticides, lead) and a variety of medical conditions and events (e.g., preterm birth, traumatic brain injury, brain tumors, congenital heart disease).

          Discussion: Although the data required for the analysis were available for only three environmental chemicals (methylmercury, organophosphate pesticides, lead), the results suggest that their contributions to neurodevelopmental morbidity are substantial, exceeding those of many nonchemical risk factors.

          Conclusion: A method for comparing the relative contributions of different risk factors provides a rational basis for establishing priorities for reducing neurodevelopmental morbidity in children.

          Related collections

          Most cited references72

          • Record: found
          • Abstract: found
          • Article: not found

          Low-Level Environmental Lead Exposure and Children’s Intellectual Function: An International Pooled Analysis

          Lead is a confirmed neurotoxin, but questions remain about lead-associated intellectual deficits at blood lead levels < 10 μg/dL and whether lower exposures are, for a given change in exposure, associated with greater deficits. The objective of this study was to examine the association of intelligence test scores and blood lead concentration, especially for children who had maximal measured blood lead levels < 10 μg/dL. We examined data collected from 1,333 children who participated in seven international population-based longitudinal cohort studies, followed from birth or infancy until 5–10 years of age. The full-scale IQ score was the primary outcome measure. The geometric mean blood lead concentration of the children peaked at 17.8 μg/dL and declined to 9.4 μg/dL by 5–7 years of age; 244 (18%) children had a maximal blood lead concentration < 10 μg/dL, and 103 (8%) had a maximal blood lead concentration < 7.5 μg/dL. After adjustment for covariates, we found an inverse relationship between blood lead concentration and IQ score. Using a log-linear model, we found a 6.9 IQ point decrement [95% confidence interval (CI), 4.2–9.4] associated with an increase in concurrent blood lead levels from 2.4 to 30 μg/dL. The estimated IQ point decrements associated with an increase in blood lead from 2.4 to 10 μg/dL, 10 to 20 μg/dL, and 20 to 30 μg/dL were 3.9 (95% CI, 2.4–5.3), 1.9 (95% CI, 1.2–2.6), and 1.1 (95% CI, 0.7–1.5), respectively. For a given increase in blood lead, the lead-associated intellectual decrement for children with a maximal blood lead level < 7.5 μg/dL was significantly greater than that observed for those with a maximal blood lead level ≥7.5 μg/dL (p = 0.015). We conclude that environmental lead exposure in children who have maximal blood lead levels < 7.5 μg/dL is associated with intellectual deficits.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cognitive and behavioral outcomes of school-aged children who were born preterm: a meta-analysis.

            The cognitive and behavioral outcomes of school-aged children who were born preterm have been reported extensively. Many of these studies have methodological flaws that preclude an accurate estimate of the long-term outcomes of prematurity. To estimate the effect of preterm birth on cognition and behavior in school-aged children. MEDLINE search (1980 to November 2001) for English-language articles, supplemented by a manual search of personal files maintained by 2 of the authors. We included case-control studies reporting cognitive and/or behavioral data of children who were born preterm and who were evaluated after their fifth birthday if the attrition rate was less than 30%. From the 227 reviewed studies, cognitive data from 15 studies and behavioral data from 16 studies were selected. Data on population demographics, study characteristics, and cognitive and behavioral outcomes were extracted from each study, entered in a customized database, and reviewed twice to minimize error. Differences between the mean cognitive scores of cases and controls were pooled. Homogeneity across studies was formally tested using a general variance-based method and graphically using Galbraith plots. Linear meta-analysis regression models were fitted to explore the impact of birth weight and gestational age on cognitive outcomes. Study-specific relative risks (RRs) were calculated for the incidence of attention-deficit/hyperactivity disorder (ADHD) and pooled. Quality assessment of the studies was performed based on a 10-point scale. Publication bias was examined using Begg modified funnel plots and formally tested using the Egger weighted-linear regression method. Among 1556 cases and 1720 controls, controls had significantly higher cognitive scores compared with children who were born preterm (weighted mean difference, 10.9; 95% confidence interval [CI], 9.2-12.5). The mean cognitive scores of preterm-born cases and term-born controls were directly proportional to their birth weight (R(2) = 0.51; P<.001) and gestational age (R(2) = 0.49; P<.001). Age at evaluation had no significant correlation with mean difference in cognitive scores (R(2) = 0.12; P =.20). Preterm-born children showed increases in externalizing and internalizing behaviors in 81% of studies and had more than twice the RR for developing ADHD (pooled RR, 2.64; 95% CI, 1.85-3.78). No differences were noted in cognition and behaviors based on the quality of the study. Children who were born preterm are at risk for reduced cognitive test scores and their immaturity at birth is directly proportional to the mean cognitive scores at school age. Preterm-born children also show an increased incidence of ADHD and other behaviors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Clinical trials in head injury.

              Traumatic brain injury (TBI) remains a major public health problem globally. In the United States the incidence of closed head injuries admitted to hospitals is conservatively estimated to be 200 per 100,000 population, and the incidence of penetrating head injury is estimated to be 12 per 100,000, the highest of any developed country in the world. This yields an approximate number of 500,000 new cases each year, a sizeable proportion of which demonstrate significant long-term disabilities. Unfortunately, there is a paucity of proven therapies for this disease. For a variety of reasons, clinical trials for this condition have been difficult to design and perform. Despite promising pre-clinical data, most of the trials that have been performed in recent years have failed to demonstrate any significant improvement in outcomes. The reasons for these failures have not always been apparent and any insights gained were not always shared. It was therefore feared that we were running the risk of repeating our mistakes. Recognizing the importance of TBI, the National Institute of Neurological Disorders and Stroke (NINDS) sponsored a workshop that brought together experts from clinical, research, and pharmaceutical backgrounds. This workshop proved to be very informative and yielded many insights into previous and future TBI trials. This paper is an attempt to summarize the key points made at the workshop. It is hoped that these lessons will enhance the planning and design of future efforts in this important field of research.
                Bookmark

                Author and article information

                Journal
                Environ Health Perspect
                Environ. Health Perspect
                EHP
                Environmental Health Perspectives
                National Institute of Environmental Health Sciences
                0091-6765
                1552-9924
                19 December 2011
                April 2012
                : 120
                : 4
                : 501-507
                Affiliations
                [1]Children’s Hospital Boston, Harvard Medical School, Boston, Massachusetts, USA
                Author notes
                Address correspondence to D.C. Bellinger, Children’s Hospital Boston, Farley Basement Box 127, 300 Longwood Ave., Boston, MA 02115 USA. Telephone: (617) 355-6565. Fax: (617) 730-0618. E-mail: david.bellinger@ 123456childrens.harvard.edu

                The author has served as an expert witness in civil litigation involving exposures of children to lead and metallic mercury and has received travel funding and honoraria to present lectures on environmental health of children.

                Article
                ehp.1104170
                10.1289/ehp.1104170
                3339460
                22182676
                d3fa1461-9e1b-4543-b4fe-a825b058ff06
                Copyright @ 2011

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 05 July 2011
                : 19 December 2011
                Categories
                Review

                Public health
                neurodevelopment,epidemiology,children,chemicals
                Public health
                neurodevelopment, epidemiology, children, chemicals

                Comments

                Comment on this article