28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Detection of Cadmium Risk to the Photosynthetic Performance of Hybrid Pennisetum

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Photosynthesis plays an essential role in plant growth and crop yield, and the mechanisms of the effects of cadmium (Cd) on photosynthetic performance require more attention. The acute toxicity of Cd in soil to the photosynthetic capacity of Hybrid Pennisetum was evaluated using gas exchange parameters, A/ C i curves, light response curves, and chlorophyll a fluorescence transients after exposure to elevated Cd concentrations (0, 10, 20, 50, 70, and 100 mg kg −1) for a 3-month period. The results indicated that leaf Cd concentration in Hybrid Pennisetum increased with the strength of soil Cd stress and ranged from 4.9 to 15.8 μg g −1 DW. The accumulation of leaf Cd severely restricted photosynthesis and its non-stomatal limitation in regulating the photosynthetic performance of Hybrid Pennisetum. The leaf chloroplasts at 10 and 20 mg kg −1 Cd concentrations showed no noticeable change, but the chlorophyll content significantly decreased by 9.0–20.4% at 50–100 mg kg −1 Cd concentrations. The Cd treatments also decreased plant ribulose-1,5-bisphosphate (RuBP) activity ( V cmax ) and regeneration capacity ( J max ), triose phosphate utilization ( TPU), light-saturated photosynthesis ( A max ), apparent quantum yield ( AQY), light saturation point ( LSP), and dark respiration ( R day ), but Cd treatment increased the light compensation point ( LCP). The shape of chlorophyll a fluorescence transients in leaves was altered under different Cd treatments. The increased OJ phase and the decreased IP phase in fluorescence induction curves suggested that Cd toxicity inhibited both light use efficiency and photodamage avoidance ability. These results suggested that the decrease in photosynthesis through exposure to Cd may be a result of the decrease in leaf chlorophyll content, Rubisco activity, and RuBP regeneration, inhibition of triose phosphate utilization, reduction of the ability to use light and provide energy, and restrictions on electron transport in PSII.

          Related collections

          Most cited references97

          • Record: found
          • Abstract: found
          • Article: not found

          A biochemical model of photosynthetic CO2 assimilation in leaves of C 3 species.

          Various aspects of the biochemistry of photosynthetic carbon assimilation in C3 plants are integrated into a form compatible with studies of gas exchange in leaves. These aspects include the kinetic properties of ribulose bisphosphate carboxylase-oxygenase; the requirements of the photosynthetic carbon reduction and photorespiratory carbon oxidation cycles for reduced pyridine nucleotides; the dependence of electron transport on photon flux and the presence of a temperature dependent upper limit to electron transport. The measurements of gas exchange with which the model outputs may be compared include those of the temperature and partial pressure of CO2(p(CO2)) dependencies of quantum yield, the variation of compensation point with temperature and partial pressure of O2(p(O2)), the dependence of net CO2 assimilation rate on p(CO2) and irradiance, and the influence of p(CO2) and irradiance on the temperature dependence of assimilation rate.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants.

            Experimental studies on CO2 assimilation of mesophytic C3 plants in relation to relative water content (RWC) are discussed. Decreasing RWC slows the actual rate of photosynthetic CO2 assimilation (A) and decreases the potential rate (Apot). Generally, as RWC falls from c. 100 to c. 75%, the stomatal conductance (gs) decreases, and with it A. However, there are two general types of relation of Apot to RWC, which are called Type 1 and Type 2. Type 1 has two main phases. As RWC decreases from 100 to c. 75%, Apot is unaffected, but decreasing stomatal conductance (gs) results in smaller A, and lower CO2 concentration inside the leaf (Ci) and in the chloroplast (Cc), the latter falling possibly to the compensation point. Down-regulation of electron transport occurs by energy quenching mechanisms, and changes in carbohydrate and nitrogen metabolism are considered acclimatory, caused by low Ci and reversible by elevated CO2. Below 75% RWC, there is metabolic inhibition of Apot, inhibition of A then being partly (but progressively less) reversible by elevated CO2; gs regulates A progressively less, and Ci and CO2 compensation point, Gamma rise. It is suggested that this is the true stress phase, where the decrease in Apot is caused by decreased ATP synthesis and a consequent decreased synthesis of RuBP. In the Type 2 response, Apot decreases progressively at RWC 100 to 75%, with A being progressively less restored to the unstressed value by elevated CO2. Decreased gs leads to a lower Ci and Cc but they probably do not reach compensation point: gs becomes progressively less important and metabolic limitations more important as RWC falls. The primary effect of low RWC on Apot is most probably caused by limited RuBP synthesis, as a result of decreased ATP synthesis, either through inhibition of Coupling Factor activity or amount due to increased ion concentration. Carbohydrate synthesis and accumulation decrease. Type 2 response is considered equivalent to Type 1 at RWC below c. 75%, with Apot inhibited by limited ATP and RuBP synthesis, respiratory metabolism dominates and Ci and Gamma rise. The importance of inhibited ATP synthesis as a primary cause of decreasing Apot is discussed. Factors determining the Type 1 and Type 2 responses are unknown. Electron transport is maintained (but down-regulated) in Types 1 and 2 over a wide range of RWC, and a large reduced/oxidized adenylate ratio results. Metabolic imbalance results in amino acid accumulation and decreased and altered protein synthesis. These conditions profoundly affect cell functions and ultimately cause cell death. Type 1 and 2 responses may reflect differences in gs and in sensitivity of metabolism to decreasing RWC.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fitting photosynthetic carbon dioxide response curves for C(3) leaves.

              Photosynthetic responses to carbon dioxide concentration can provide data on a number of important parameters related to leaf physiology. Methods for fitting a model to such data are briefly described. The method will fit the following parameters: V(cmax), J, TPU, R(d) and g(m)[maximum carboxylation rate allowed by ribulose 1.5-bisphosphate carboxylase/oxygenase (Rubisco), rate of photosynthetic electron transport (based on NADPH requirement), triose phosphate use, day respiration and mesophyll conductance, respectively]. The method requires at least five data pairs of net CO(2) assimilation (A) and [CO(2)] in the intercellular airspaces of the leaf (C(i)) and requires users to indicate the presumed limiting factor. The output is (1) calculated CO(2) partial pressure at the sites of carboxylation, C(c), (2) values for the five parameters at the measurement temperature and (3) values adjusted to 25 degrees C to facilitate comparisons. Fitting this model is a way of exploring leaf level photosynthesis. However, interpreting leaf level photosynthesis in terms of underlying biochemistry and biophysics is subject to assumptions that hold to a greater or lesser degree, a major assumption being that all parts of the leaf are behaving in the same way at each instant.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                20 June 2019
                2019
                : 10
                : 798
                Affiliations
                [1] 1College of Resources and Environment, Shandong Agricultural University , Tai’an, China
                [2] 2Shandong Provincial Engineering and Technology Research Center for Phyto-Microremediation in Saline-Alkali Land , Shandong, China
                [3] 3Shandong Provincial Animal Husbandry General Station, Shandong Province Grass Products Quality Inspection Center , Jinan, China
                Author notes

                Edited by: Benoit Schoefs, Le Mans Université, France

                Reviewed by: Tasir Sharief Per, Aligarh Muslim University, India; Mohd Asgher, Baba Ghulam Shah Badshah University, India

                *Correspondence: Weifeng Chen, chwf@ 123456sdau.edu.cn

                This article was submitted to Plant Physiology, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2019.00798
                6596316
                dab0e4d9-5d2e-495c-a050-16040b8a0561
                Copyright © 2019 Song, Yue, Chen, Jiang, Han and Li.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 22 March 2019
                : 03 June 2019
                Page count
                Figures: 10, Tables: 1, Equations: 0, References: 105, Pages: 14, Words: 0
                Categories
                Plant Science
                Original Research

                Plant science & Botany
                cadmium stress,photosynthetic performance,electron transport,non-stomatal limitation,hybrid pennisetum

                Comments

                Comment on this article