0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Depression and hepatobiliary diseases: a bidirectional Mendelian randomization study

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          More and more evidence suggests a close association between depression and hepatobiliary diseases, but its causal relationship is not yet clear.

          Method

          Using genome-wide association studies (GWAS) to summarize data, independent genetic variations associated with depression were selected as instrumental variables. Firstly, we designed a univariate Mendelian randomization (UVMR) analysis with two samples and simultaneously conducted reverse validation to evaluate the potential bidirectional causal relationship between depression and various hepatobiliary diseases. Secondly, we conducted a multivariate Mendelian randomization (MVMR) analysis on diseases closely related to depression, exploring the mediating effects of waist to hip ratio, hypertension, and daytime nap. The mediating effects were obtained through MVMR. For UVMR and MVMR, inverse variance weighted method (IVW) is considered the most important analytical method. Sensitivity analysis was conducted using Cochran’Q, MR Egger, and Leave-one-out methods.

          Results

          UVMR analysis showed that depression may increase the risk of non-alcoholic fatty liver disease (OR, 1.22; 95% CI, 1.03-1.46; p=0.0248) in liver diseases, while depression does not increase the risk of other liver diseases; In biliary and pancreatic related diseases, depression may increase the risk of cholelithiasis (OR, 1.26; 95% CI, 1.05-1.50; p=0.0120), chronic pancreatitis (OR, 1.61; 95% CI, 1.10-2.35; p=0.0140), and cholecystitis (OR, 1.23; 95% CI, 1.03-1.48; p=0.0250). In addition, through reverse validation, we found that non-alcoholic fatty liver disease, cholelithiasis, chronic pancreatitis, cholecystitis, or the inability to increase the risk of depression ( p>0.05). The waist to hip ratio, hypertension, and daytime nap play a certain role in the process of depression leading to non-alcoholic fatty liver disease, with a mediating effect of 35.8%.

          Conclusion

          Depression is a susceptibility factor for non-alcoholic fatty liver disease, and the causal effect of genetic susceptibility to depression on non-alcoholic fatty liver disease is mediated by waist-hip ratio, hypertension, and daytime nap.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression

          Background: The number of Mendelian randomization analyses including large numbers of genetic variants is rapidly increasing. This is due to the proliferation of genome-wide association studies, and the desire to obtain more precise estimates of causal effects. However, some genetic variants may not be valid instrumental variables, in particular due to them having more than one proximal phenotypic correlate (pleiotropy). Methods: We view Mendelian randomization with multiple instruments as a meta-analysis, and show that bias caused by pleiotropy can be regarded as analogous to small study bias. Causal estimates using each instrument can be displayed visually by a funnel plot to assess potential asymmetry. Egger regression, a tool to detect small study bias in meta-analysis, can be adapted to test for bias from pleiotropy, and the slope coefficient from Egger regression provides an estimate of the causal effect. Under the assumption that the association of each genetic variant with the exposure is independent of the pleiotropic effect of the variant (not via the exposure), Egger’s test gives a valid test of the null causal hypothesis and a consistent causal effect estimate even when all the genetic variants are invalid instrumental variables. Results: We illustrate the use of this approach by re-analysing two published Mendelian randomization studies of the causal effect of height on lung function, and the causal effect of blood pressure on coronary artery disease risk. The conservative nature of this approach is illustrated with these examples. Conclusions: An adaption of Egger regression (which we call MR-Egger) can detect some violations of the standard instrumental variable assumptions, and provide an effect estimate which is not subject to these violations. The approach provides a sensitivity analysis for the robustness of the findings from a Mendelian randomization investigation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator

            ABSTRACT Developments in genome‐wide association studies and the increasing availability of summary genetic association data have made application of Mendelian randomization relatively straightforward. However, obtaining reliable results from a Mendelian randomization investigation remains problematic, as the conventional inverse‐variance weighted method only gives consistent estimates if all of the genetic variants in the analysis are valid instrumental variables. We present a novel weighted median estimator for combining data on multiple genetic variants into a single causal estimate. This estimator is consistent even when up to 50% of the information comes from invalid instrumental variables. In a simulation analysis, it is shown to have better finite‐sample Type 1 error rates than the inverse‐variance weighted method, and is complementary to the recently proposed MR‐Egger (Mendelian randomization‐Egger) regression method. In analyses of the causal effects of low‐density lipoprotein cholesterol and high‐density lipoprotein cholesterol on coronary artery disease risk, the inverse‐variance weighted method suggests a causal effect of both lipid fractions, whereas the weighted median and MR‐Egger regression methods suggest a null effect of high‐density lipoprotein cholesterol that corresponds with the experimental evidence. Both median‐based and MR‐Egger regression methods should be considered as sensitivity analyses for Mendelian randomization investigations with multiple genetic variants.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The MR-Base platform supports systematic causal inference across the human phenome

              Results from genome-wide association studies (GWAS) can be used to infer causal relationships between phenotypes, using a strategy known as 2-sample Mendelian randomization (2SMR) and bypassing the need for individual-level data. However, 2SMR methods are evolving rapidly and GWAS results are often insufficiently curated, undermining efficient implementation of the approach. We therefore developed MR-Base (http://www.mrbase.org): a platform that integrates a curated database of complete GWAS results (no restrictions according to statistical significance) with an application programming interface, web app and R packages that automate 2SMR. The software includes several sensitivity analyses for assessing the impact of horizontal pleiotropy and other violations of assumptions. The database currently comprises 11 billion single nucleotide polymorphism-trait associations from 1673 GWAS and is updated on a regular basis. Integrating data with software ensures more rigorous application of hypothesis-driven analyses and allows millions of potential causal relationships to be efficiently evaluated in phenome-wide association studies.
                Bookmark

                Author and article information

                Contributors
                URI : https://loop.frontiersin.org/people/2623067Role: Role: Role: Role:
                Role: Role: Role: Role:
                URI : https://loop.frontiersin.org/people/1293914Role: Role: Role:
                Role: Role: Role:
                Role: Role: Role:
                Role: Role: Role:
                URI : https://loop.frontiersin.org/people/2622877Role: Role: Role: Role: Role:
                Journal
                Front Psychiatry
                Front Psychiatry
                Front. Psychiatry
                Frontiers in Psychiatry
                Frontiers Media S.A.
                1664-0640
                26 March 2024
                2024
                : 15
                : 1366509
                Affiliations
                [1] 1 Wenzhou Medical University , Wenzhou, Zhejiang, China
                [2] 2 Zhuji Hospital Affiliated of Wenzhou Medical University , Shaoxing, Zhejiang, China
                [3] 3 Basic Medical College, Zhejiang Chinese Medical University , Hangzhou, Zhejiang, China
                Author notes

                Edited by: Heinz Grunze, Psychiatrie Schwäbisch Hall, Germany

                Reviewed by: Xiting Wang, Chinese Academy of Sciences (CAS), China

                Jifang Sheng, Zhejiang University, China

                Jian Xiao, Wenzhou Medical University, China

                *Correspondence: Yuanyuan Qian, m15068255906@ 123456163.com ; Dayong Lou, Loudayong@ 123456wmu.edu.cn

                †These authors have contributed equally to this work and share first authorship

                Article
                10.3389/fpsyt.2024.1366509
                11002219
                38596638
                6a2e133a-f100-4d33-ac61-7ea8911164f4
                Copyright © 2024 Kong, Yao, Ren, Zhou, Zhao, Qian and Lou

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 06 January 2024
                : 11 March 2024
                Page count
                Figures: 6, Tables: 2, Equations: 0, References: 48, Pages: 11, Words: 4140
                Funding
                The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This study was supported by the Zhejiang Provincial Traditional Chinese Medicine Science Research Fund project (2023ZF178), the Zhejiang Physicians Association project (YS2022-3-002), and the Zhuji City Medical and Health Science and Technology Plan project (2023YW097).
                Categories
                Psychiatry
                Original Research
                Custom metadata
                Mood Disorders

                Clinical Psychology & Psychiatry
                depression,hepatobiliary diseases,mendelian randomization,multivariate mendelian randomization,univariate mendelian randomization

                Comments

                Comment on this article