95
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Genomic prediction in animals and plants: simulation of data, validation, reporting, and benchmarking.

      Genomics
      Animals, Breeding, methods, Computer Simulation, Data Interpretation, Statistical, Genome, Models, Genetic, Models, Statistical, Plants, Quantitative Trait Loci

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The genomic prediction of phenotypes and breeding values in animals and plants has developed rapidly into its own research field. Results of genomic prediction studies are often difficult to compare because data simulation varies, real or simulated data are not fully described, and not all relevant results are reported. In addition, some new methods have been compared only in limited genetic architectures, leading to potentially misleading conclusions. In this article we review simulation procedures, discuss validation and reporting of results, and apply benchmark procedures for a variety of genomic prediction methods in simulated and real example data. Plant and animal breeding programs are being transformed by the use of genomic data, which are becoming widely available and cost-effective to predict genetic merit. A large number of genomic prediction studies have been published using both simulated and real data. The relative novelty of this area of research has made the development of scientific conventions difficult with regard to description of the real data, simulation of genomes, validation and reporting of results, and forward in time methods. In this review article we discuss the generation of simulated genotype and phenotype data, using approaches such as the coalescent and forward in time simulation. We outline ways to validate simulated data and genomic prediction results, including cross-validation. The accuracy and bias of genomic prediction are highlighted as performance indicators that should be reported. We suggest that a measure of relatedness between the reference and validation individuals be reported, as its impact on the accuracy of genomic prediction is substantial. A large number of methods were compared in example simulated and real (pine and wheat) data sets, all of which are publicly available. In our limited simulations, most methods performed similarly in traits with a large number of quantitative trait loci (QTL), whereas in traits with fewer QTL variable selection did have some advantages. In the real data sets examined here all methods had very similar accuracies. We conclude that no single method can serve as a benchmark for genomic prediction. We recommend comparing accuracy and bias of new methods to results from genomic best linear prediction and a variable selection approach (e.g., BayesB), because, together, these methods are appropriate for a range of genetic architectures. An accompanying article in this issue provides a comprehensive review of genomic prediction methods and discusses a selection of topics related to application of genomic prediction in plants and animals.

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found

          Association mapping in structured populations.

          The use, in association studies, of the forthcoming dense genomewide collection of single-nucleotide polymorphisms (SNPs) has been heralded as a potential breakthrough in the study of the genetic basis of common complex disorders. A serious problem with association mapping is that population structure can lead to spurious associations between a candidate marker and a phenotype. One common solution has been to abandon case-control studies in favor of family-based tests of association, such as the transmission/disequilibrium test (TDT), but this comes at a considerable cost in the need to collect DNA from close relatives of affected individuals. In this article we describe a novel, statistically valid, method for case-control association studies in structured populations. Our method uses a set of unlinked genetic markers to infer details of population structure, and to estimate the ancestry of sampled individuals, before using this information to test for associations within subpopulations. It provides power comparable with the TDT in many settings and may substantially outperform it if there are conflicting associations in different subpopulations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Development and Characterization of a High Density SNP Genotyping Assay for Cattle

            The success of genome-wide association (GWA) studies for the detection of sequence variation affecting complex traits in human has spurred interest in the use of large-scale high-density single nucleotide polymorphism (SNP) genotyping for the identification of quantitative trait loci (QTL) and for marker-assisted selection in model and agricultural species. A cost-effective and efficient approach for the development of a custom genotyping assay interrogating 54,001 SNP loci to support GWA applications in cattle is described. A novel algorithm for achieving a compressed inter-marker interval distribution proved remarkably successful, with median interval of 37 kb and maximum predicted gap of <350 kb. The assay was tested on a panel of 576 animals from 21 cattle breeds and six outgroup species and revealed that from 39,765 to 46,492 SNP are polymorphic within individual breeds (average minor allele frequency (MAF) ranging from 0.24 to 0.27). The assay also identified 79 putative copy number variants in cattle. Utility for GWA was demonstrated by localizing known variation for coat color and the presence/absence of horns to their correct genomic locations. The combination of SNP selection and the novel spacing algorithm allows an efficient approach for the development of high-density genotyping platforms in species having full or even moderate quality draft sequence. Aspects of the approach can be exploited in species which lack an available genome sequence. The BovineSNP50 assay described here is commercially available from Illumina and provides a robust platform for mapping disease genes and QTL in cattle.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mapping genes for complex traits in domestic animals and their use in breeding programmes.

              Genome-wide panels of SNPs have recently been used in domestic animal species to map and identify genes for many traits and to select genetically desirable livestock. This has led to the discovery of the causal genes and mutations for several single-gene traits but not for complex traits. However, the genetic merit of animals can still be estimated by genomic selection, which uses genome-wide SNP panels as markers and statistical methods that capture the effects of large numbers of SNPs simultaneously. This approach is expected to double the rate of genetic improvement per year in many livestock systems.
                Bookmark

                Author and article information

                Journal
                23222650
                3567728
                10.1534/genetics.112.147983

                Chemistry
                Animals,Breeding,methods,Computer Simulation,Data Interpretation, Statistical,Genome,Models, Genetic,Models, Statistical,Plants,Quantitative Trait Loci

                Comments

                Comment on this article