22
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Severe COVID-19 outcomes after full vaccination of primary schedule and initial boosters: pooled analysis of national prospective cohort studies of 30 million individuals in England, Northern Ireland, Scotland, and Wales

      research-article
      , PhD a , , , PhD b , , , Prof, PhD a , , , PhD c , , , PhD d , , , Prof, PhD e , f , , , MSc b , , PhD a , , PhD d , g , , PhD a , , PhD f , , PhD f , , PhD c , , Prof, PhD h , , PhD j , , Prof Sir, MD k , , PhD d , , PhD b , , Prof, PhD i , j , , PhD j , , Prof, PhD j , l , , MSc b , , PhD c , , Prof, MD c , , Prof, MD b , , Prof, MD d , , Prof Sir, MD j , *
      Lancet (London, England)
      The Author(s). Published by Elsevier Ltd.
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Current UK vaccination policy is to offer future COVID-19 booster doses to individuals at high risk of serious illness from COVID-19, but it is still uncertain which groups of the population could benefit most. In response to an urgent request from the UK Joint Committee on Vaccination and Immunisation, we aimed to identify risk factors for severe COVID-19 outcomes (ie, COVID-19-related hospitalisation or death) in individuals who had completed their primary COVID-19 vaccination schedule and had received the first booster vaccine.

          Methods

          We constructed prospective cohorts across all four UK nations through linkages of primary care, RT-PCR testing, vaccination, hospitalisation, and mortality data on 30 million people. We included individuals who received primary vaccine doses of BNT162b2 (tozinameran; Pfizer–BioNTech) or ChAdOx1 nCoV-19 (Oxford–AstraZeneca) vaccines in our initial analyses. We then restricted analyses to those given a BNT162b2 or mRNA-1273 (elasomeran; Moderna) booster and had a severe COVID-19 outcome between Dec 20, 2021, and Feb 28, 2022 (when the omicron (B.1.1.529) variant was dominant). We fitted time-dependent Poisson regression models and calculated adjusted rate ratios (aRRs) and 95% CIs for the associations between risk factors and COVID-19-related hospitalisation or death. We adjusted for a range of potential covariates, including age, sex, comorbidities, and previous SARS-CoV-2 infection. Stratified analyses were conducted by vaccine type. We then did pooled analyses across UK nations using fixed-effect meta-analyses.

          Findings

          Between Dec 8, 2020, and Feb 28, 2022, 16 208 600 individuals completed their primary vaccine schedule and 13 836 390 individuals received a booster dose. Between Dec 20, 2021, and Feb 28, 2022, 59 510 (0·4%) of the primary vaccine group and 26 100 (0·2%) of those who received their booster had severe COVID-19 outcomes. The risk of severe COVID-19 outcomes reduced after receiving the booster (rate change: 8·8 events per 1000 person-years to 7·6 events per 1000 person-years). Older adults (≥80 years vs 18–49 years; aRR 3·60 [95% CI 3·45–3·75]), those with comorbidities (≥5 comorbidities vs none; 9·51 [9·07–9·97]), being male (male vs female; 1·23 [1·20–1·26]), and those with certain underlying health conditions—in particular, individuals receiving immunosuppressants (yes vs no; 5·80 [5·53–6·09])—and those with chronic kidney disease (stage 5 vs no; 3·71 [2·90–4·74]) remained at high risk despite the initial booster. Individuals with a history of COVID-19 infection were at reduced risk (infected ≥9 months before booster dose vs no previous infection; aRR 0·41 [95% CI 0·29–0·58]).

          Interpretation

          Older people, those with multimorbidity, and those with specific underlying health conditions remain at increased risk of COVID-19 hospitalisation and death after the initial vaccine booster and should, therefore, be prioritised for additional boosters, including novel optimised versions, and the increasing array of COVID-19 therapeutics.

          Funding

          National Core Studies–Immunity, UK Research and Innovation (Medical Research Council), Health Data Research UK, the Scottish Government, and the University of Edinburgh.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies.

          Much biomedical research is observational. The reporting of such research is often inadequate, which hampers the assessment of its strengths and weaknesses and of a study's generalisability. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) initiative developed recommendations on what should be included in an accurate and complete report of an observational study. We defined the scope of the recommendations to cover three main study designs: cohort, case-control, and cross-sectional studies. We convened a 2-day workshop in September, 2004, with methodologists, researchers, and journal editors to draft a checklist of items. This list was subsequently revised during several meetings of the coordinating group and in e-mail discussions with the larger group of STROBE contributors, taking into account empirical evidence and methodological considerations. The workshop and the subsequent iterative process of consultation and revision resulted in a checklist of 22 items (the STROBE statement) that relate to the title, abstract, introduction, methods, results, and discussion sections of articles.18 items are common to all three study designs and four are specific for cohort, case-control, or cross-sectional studies.A detailed explanation and elaboration document is published separately and is freely available on the websites of PLoS Medicine, Annals of Internal Medicine, and Epidemiology. We hope that the STROBE statement will contribute to improving the quality of reporting of observational studies
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A basic introduction to fixed-effect and random-effects models for meta-analysis.

            There are two popular statistical models for meta-analysis, the fixed-effect model and the random-effects model. The fact that these two models employ similar sets of formulas to compute statistics, and sometimes yield similar estimates for the various parameters, may lead people to believe that the models are interchangeable. In fact, though, the models represent fundamentally different assumptions about the data. The selection of the appropriate model is important to ensure that the various statistics are estimated correctly. Additionally, and more fundamentally, the model serves to place the analysis in context. It provides a framework for the goals of the analysis as well as for the interpretation of the statistics. In this paper we explain the key assumptions of each model, and then outline the differences between the models. We conclude with a discussion of factors to consider when choosing between the two models. Copyright © 2010 John Wiley & Sons, Ltd. Copyright © 2010 John Wiley & Sons, Ltd.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The REporting of studies Conducted using Observational Routinely-collected health Data (RECORD) Statement

              Routinely collected health data, obtained for administrative and clinical purposes without specific a priori research goals, are increasingly used for research. The rapid evolution and availability of these data have revealed issues not addressed by existing reporting guidelines, such as Strengthening the Reporting of Observational Studies in Epidemiology (STROBE). The REporting of studies Conducted using Observational Routinely collected health Data (RECORD) statement was created to fill these gaps. RECORD was created as an extension to the STROBE statement to address reporting items specific to observational studies using routinely collected health data. RECORD consists of a checklist of 13 items related to the title, abstract, introduction, methods, results, and discussion section of articles, and other information required for inclusion in such research reports. This document contains the checklist and explanatory and elaboration information to enhance the use of the checklist. Examples of good reporting for each RECORD checklist item are also included herein. This document, as well as the accompanying website and message board (http://www.record-statement.org), will enhance the implementation and understanding of RECORD. Through implementation of RECORD, authors, journals editors, and peer reviewers can encourage transparency of research reporting.
                Bookmark

                Author and article information

                Journal
                Lancet
                Lancet
                Lancet (London, England)
                The Author(s). Published by Elsevier Ltd.
                0140-6736
                1474-547X
                14 October 2022
                15-21 October 2022
                14 October 2022
                : 400
                : 10360
                : 1305-1320
                Affiliations
                [a ]School of Medicine, University of St Andrews, St Andrews, UK
                [b ]Population Data Science, Swansea University Medical School, Faculty of Medicine, Health, and Life Science, Swansea University, Swansea, UK
                [c ]Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
                [d ]Centre for Public Health, Queen's University Belfast, Belfast, UK
                [e ]Department of Mathematics and Statistics, University of Strathclyde, Glasgow, UK
                [f ]Public Health Scotland, Glasgow, UK
                [g ]Public Health Agency, Belfast, UK
                [h ]MRC/CSO Social & Public Health Sciences Unit, University of Glasgow, Glasgow, UK
                [i ]Centre of Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
                [j ]Usher Institute, University of Edinburgh, Edinburgh, UK
                [k ]Academic Primary Care, University of Aberdeen School of Medicine and Dentistry, Aberdeen, UK
                [l ]Faculty of Health, Victoria University of Wellington, Wellington, New Zealand
                Author notes
                [* ]Correspondence to: Prof Sir Aziz Sheikh, Usher Institute, University of Edinburgh, Edinburgh EH8 9DX, UK
                [†]

                Contributed equally

                Article
                S0140-6736(22)01656-7
                10.1016/S0140-6736(22)01656-7
                9560746
                36244382
                e0c5c19e-384e-4b69-ae37-0caefa76da96
                © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                Categories
                Articles

                Medicine
                Medicine

                Comments

                Comment on this article