53
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Analysis of compositions of microbiomes with bias correction.

      1 , 2
      Nature communications
      Springer Science and Business Media LLC

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Differential abundance (DA) analysis of microbiome data continues to be a challenging problem due to the complexity of the data. In this article we define the notion of "sampling fraction" and demonstrate a major hurdle in performing DA analysis of microbiome data is the bias introduced by differences in the sampling fractions across samples. We introduce a methodology called Analysis of Compositions of Microbiomes with Bias Correction (ANCOM-BC), which estimates the unknown sampling fractions and corrects the bias induced by their differences among samples. The absolute abundance data are modeled using a linear regression framework. This formulation makes a fundamental advancement in the field because, unlike the existing methods, it (a) provides statistically valid test with appropriate p-values, (b) provides confidence intervals for differential abundance of each taxon, (c) controls the False Discovery Rate (FDR), (d) maintains adequate power, and (e) is computationally simple to implement.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: not found
          • Article: not found

          Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample.

            The ongoing revolution in high-throughput sequencing continues to democratize the ability of small groups of investigators to map the microbial component of the biosphere. In particular, the coevolution of new sequencing platforms and new software tools allows data acquisition and analysis on an unprecedented scale. Here we report the next stage in this coevolutionary arms race, using the Illumina GAIIx platform to sequence a diverse array of 25 environmental samples and three known "mock communities" at a depth averaging 3.1 million reads per sample. We demonstrate excellent consistency in taxonomic recovery and recapture diversity patterns that were previously reported on the basis of metaanalysis of many studies from the literature (notably, the saline/nonsaline split in environmental samples and the split between host-associated and free-living communities). We also demonstrate that 2,000 Illumina single-end reads are sufficient to recapture the same relationships among samples that we observe with the full dataset. The results thus open up the possibility of conducting large-scale studies analyzing thousands of samples simultaneously to survey microbial communities at an unprecedented spatial and temporal resolution.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Multiple Comparisons among Means

                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nature communications
                Springer Science and Business Media LLC
                2041-1723
                2041-1723
                July 14 2020
                : 11
                : 1
                Affiliations
                [1 ] Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
                [2 ] Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, 15261, USA. shyamal.peddada@nih.gov.
                Article
                10.1038/s41467-020-17041-7
                10.1038/s41467-020-17041-7
                7360769
                32665548
                a721b9c7-6105-49bf-ad17-c3f3ec26550e
                History

                Comments

                Comment on this article