13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rarity and nutrient acquisition relationships before and after prescribed burning in an Australian box-ironbark forest

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nutrient cycling is greatly influenced by dominant plants that contribute high amounts of leaf litter to soils; however, less-dominant and rare species can play keystone roles in nutrient cycling if they have unique nutrient acquisition traits and provide high-quality litter. In many parts of the world, wildfire is likely to become more frequent and intense under a changing climate. The effect this will have on plant rarity and on species with unique nutrient acquisition traits, and thus nutrient cycling, remains poorly understood. Working within an Australian box-ironbark forest, we determined if a relationship existed between species rarity and the uniqueness of their leaf nutrient profiles, and if this relationship changed after prescribed burning. We created an index of species rarity from a data set of woody perennial species abundance in areas before and after autumn or spring burns, or left unburnt. We created indices of uniqueness for the leaf nutrient profiles of 42 woody perennial species occurring in the ecosystem, based on amounts of six macronutrients and four micronutrients found in fresh and senesced leaves of each species. Five nutrient acquisition strategies (mycorrhizal, N-fixing, carnivorous, hemiparasitic and proteoid roots) were represented in the data set. There was no community-wide relationship between rarity and uniqueness of leaf nutrient profiles, and this did not change as a result of fire. However, two hemiparasitic species were relatively rare in the ecosystem studied, and differed greatly from other species due to high K and P in senesced leaves. Thus, some of the rarest species, such as hemiparasites, can be functionally unique. Understanding the functional characteristics of rare species is important so that unique functional contributors can be identified and conserved to prevent local extinction.

          Abstract

          We examined the relationship between nutrient acquisition strategies, senesced leaf nutrient profiles and species rarity before and after prescribed burning in a nutrient-poor box-ironbark forest in southeastern Australia. While no community-wide relationship between rarity and uniqueness of leaf nutrient profiles was found, some of the rarest species were functionally unique. Two hemiparasitic species were relatively rare in the ecosystem studied, and differed greatly from other species due to high concentrations of phosphorous and potassium in senesced leaves. Our study highlights the importance of identifying and ultimately conserving species with unique traits to prevent loss of functional contributions.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Plant species traits are the predominant control on litter decomposition rates within biomes worldwide.

          Worldwide decomposition rates depend both on climate and the legacy of plant functional traits as litter quality. To quantify the degree to which functional differentiation among species affects their litter decomposition rates, we brought together leaf trait and litter mass loss data for 818 species from 66 decomposition experiments on six continents. We show that: (i) the magnitude of species-driven differences is much larger than previously thought and greater than climate-driven variation; (ii) the decomposability of a species' litter is consistently correlated with that species' ecological strategy within different ecosystems globally, representing a new connection between whole plant carbon strategy and biogeochemical cycling. This connection between plant strategies and decomposability is crucial for both understanding vegetation-soil feedbacks, and for improving forecasts of the global carbon cycle.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effects of fire on properties of forest soils: a review.

            Many physical, chemical, mineralogical, and biological soil properties can be affected by forest fires. The effects are chiefly a result of burn severity, which consists of peak temperatures and duration of the fire. Climate, vegetation, and topography of the burnt area control the resilience of the soil system; some fire-induced changes can even be permanent. Low to moderate severity fires, such as most of those prescribed in forest management, promote renovation of the dominant vegetation through elimination of undesired species and transient increase of pH and available nutrients. No irreversible ecosystem change occurs, but the enhancement of hydrophobicity can render the soil less able to soak up water and more prone to erosion. Severe fires, such as wildfires, generally have several negative effects on soil. They cause significant removal of organic matter, deterioration of both structure and porosity, considerable loss of nutrients through volatilisation, ash entrapment in smoke columns, leaching and erosion, and marked alteration of both quantity and specific composition of microbial and soil-dwelling invertebrate communities. However, despite common perceptions, if plants succeed in promptly recolonising the burnt area, the pre-fire level of most properties can be recovered and even enhanced. This work is a review of the up-to-date literature dealing with changes imposed by fires on properties of forest soils. Ecological implications of these changes are described.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mycorrhizas and nutrient cycling in ecosystems - a journey towards relevance?

              Progress towards understanding the extent to which mycorrhizal fungi are involved in the mobilization of nitrogen (N) and phosphorus (P) from natural substrates is reviewed here. While mycorrhiza research has emphasized the role of the symbiosis in facilitation of capture of these nutrients in ionic form, attention has shifted since the mid-1980s to analysing the mycorrhizal fungal abilities to release N and P from the detrital materials of microbial faunal and plant origins, which are the primary sources of these elements in terrestrial ecosystems. Ericoid, and some ectomycorrhizal fungi have the potential to be directly involved in attack both on structural polymers, which may render nutrients inaccessible, and in mobilization of N and P from the organic polymers in which they are sequestered. The advantages to the plant of achieving intervention in the microbial mobilization-immobilization cycles are stressed. While the new approaches may initially lack the precision achieved in studies of readily characterized ionic forms of N and P, they do provide insights of greater ecological relevance. The results support the hypothesis that selection has favoured ericoid and ectomycorrhizal systems with well developed saprotrophic capabilities in those ecosystems characterized by retention of N and P as organic complexes in the soil. The need for further investigation of the abilities of arbuscular mycorrhizal fungi to intervene in nutrient mobilization processes is stressed.
                Bookmark

                Author and article information

                Contributors
                Role: Associate Editor
                Journal
                AoB Plants
                AoB Plants
                aobpla
                AoB Plants
                Oxford University Press (US )
                2041-2851
                June 2018
                16 May 2018
                16 May 2018
                : 10
                : 3
                : ply032
                Affiliations
                [1 ]Deakin University, Geelong, Australia; School of Life and Environmental Sciences, Centre for Integrative Ecology (Burwood Campus), Burwood, Victoria, Australia
                [2 ]Ecology Australia Pty Ltd, Fairfield, Victoria, Australia
                Author notes
                Corresponding author’s e-mail address: jwpat@ 123456deakin.edu.au
                Article
                ply032
                10.1093/aobpla/ply032
                6007787
                738527e0-4121-4afb-9205-ee5384e6cca2
                © The Author(s) 2018. Published by Oxford University Press on behalf of the Annals of Botany Company.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 22 September 2017
                : 14 May 2018
                Page count
                Pages: 13
                Funding
                Funded by: Deakin University 10.13039/501100001778
                Funded by: Holsworth Wildlife Research Endowment (Australia) 10.13039/100008190
                Funded by: Australian State Government of Victoria’s Department of Environment, Land, Water and Planning
                Funded by: Parks Victoria 10.13039/100010233
                Categories
                Research Article

                Plant science & Botany
                disturbance,functional rarity and uniqueness,hemiparasite,hyper-accumulator,mistletoe,nutrient cycling and resorption

                Comments

                Comment on this article