119
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      REST: A mammalian silencer protein that restricts sodium channel gene expression to neurons

      Cell
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier.

          A method, using LiAc to yield competent cells, is described that increased the efficiency of genetic transformation of intact cells of Saccharomyces cerevisiae to more than 1 X 10(5) transformants per microgram of vector DNA and to 1.5% transformants per viable cell. The use of single stranded, or heat denaturated double stranded, nucleic acids as carrier resulted in about a 100 fold higher frequency of transformation with plasmids containing the 2 microns origin of replication. Single stranded DNA seems to be responsible for the effect since M13 single stranded DNA, as well as RNA, was effective. Boiled carrier DNA did not yield any increased transformation efficiency using spheroplast formation to induce DNA uptake, indicating a difference in the mechanism of transformation with the two methods.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mammalian achaete-scute homolog 1 is required for the early development of olfactory and autonomic neurons.

            The mouse Mash-1 gene, like its Drosophila homologs of the achaete-scute complex (AS-C), encodes a transcription factor expressed in neural precursors. We created a null allele of this gene by homologous recombination in embryonic stem cells. Mice homozygous for the mutation die at birth with apparent breathing and feeding defects. The brain and spinal cord of the mutants appear normal, but their olfactory epithelium and sympathetic, parasympathetic, and enteric ganglia are severely affected. In the olfactory epithelium, neuronal progenitors die at an early stage, whereas the nonneuronal supporting cells are present. In sympathetic ganglia, the mutation arrests the development of neuronal precursors, preventing the generation of sympathetic neurons, but does not affect glial precursor cells. These observations suggest that Mash-1, like its Drosophila homologs of the AS-C, controls a basic operation in development of neuronal progenitors in distinct neural lineages.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular cloning of the olfactory neuronal transcription factor Olf-1 by genetic selection in yeast.

              A novel genetic selection in yeast has been used to isolate a complementary DNA for the transcriptional activator, Olf-1, which binds to the regulatory sequences of several olfactory-specific genes. The Olf-1 protein, expressed exclusively in the olfactory receptor neurons and their precursors, contains a new helix-loop-helix motif and functions as an apparent homodimer. Olf-1 may be the first member of a family of related proteins that may direct cellular differentiation in a variety of neuronal tissues.
                Bookmark

                Author and article information

                Journal
                10.1016/0092-8674(95)90298-8
                http://www.elsevier.com/tdm/userlicense/1.0/

                Comments

                Comment on this article