31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Role of m6A/m-RNA Methylation in Stress Response Regulation

      Neuron
      Elsevier BV

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Transcriptome-wide mapping of N(6)-methyladenosine by m(6)A-seq based on immunocapturing and massively parallel sequencing.

          N(6)-methyladenosine-sequencing (m(6)A-seq) is an immunocapturing approach for the unbiased transcriptome-wide localization of m(6)A in high resolution. To our knowledge, this is the first protocol to allow a global view of this ubiquitous RNA modification, and it is based on antibody-mediated enrichment of methylated RNA fragments followed by massively parallel sequencing. Building on principles of chromatin immunoprecipitation-sequencing (ChIP-seq) and methylated DNA immunoprecipitation (MeDIP), read densities of immunoprecipitated RNA relative to untreated input control are used to identify methylated sites. A consensus motif is deduced, and its distance to the point of maximal enrichment is assessed; these measures further corroborate the success of the protocol. Identified locations are intersected in turn with gene architecture to draw conclusions regarding the distribution of m(6)A between and within gene transcripts. When applied to human and mouse transcriptomes, m(6)A-seq generated comprehensive methylation profiles revealing, for the first time, tenets governing the nonrandom distribution of m(6)A. The protocol can be completed within ~9 d for four different sample pairs (each consists of an immunoprecipitation and corresponding input).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            Ribosome profiling reveals pervasive translation outside of annotated protein-coding genes.

            Ribosome profiling suggests that ribosomes occupy many regions of the transcriptome thought to be noncoding, including 5' UTRs and long noncoding RNAs (lncRNAs). Apparent ribosome footprints outside of protein-coding regions raise the possibility of artifacts unrelated to translation, particularly when they occupy multiple, overlapping open reading frames (ORFs). Here, we show hallmarks of translation in these footprints: copurification with the large ribosomal subunit, response to drugs targeting elongation, trinucleotide periodicity, and initiation at early AUGs. We develop a metric for distinguishing between 80S footprints and nonribosomal sources using footprint size distributions, which validates the vast majority of footprints outside of coding regions. We present evidence for polypeptide production beyond annotated genes, including the induction of immune responses following human cytomegalovirus (HCMV) infection. Translation is pervasive on cytosolic transcripts outside of conserved reading frames, and direct detection of this expanded universe of translated products enables efforts at understanding how cells manage and exploit its consequences. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              N6-methyladenosine (m6A) recruits and repels proteins to regulate mRNA homeostasis

              A comprehensive proteomics screen for ‘reader’ proteins that recognize m6A-modified RNA reveals that the modification both promotes and prevents the binding of factors that control mRNA homeostasis in mammalian cells.
                Bookmark

                Author and article information

                Journal
                10.1016/j.neuron.2018.07.009
                http://creativecommons.org/licenses/by-nc-nd/4.0/

                Comments

                Comment on this article