18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A perivascular niche for multipotent progenitors in the fetal testis

      research-article
      1 , 1 , 2 ,
      Nature Communications
      Nature Publishing Group UK

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Androgens responsible for male sexual differentiation in utero are produced by Leydig cells in the fetal testicular interstitium. Leydig cells rarely proliferate and, hence, rely on constant differentiation of interstitial progenitors to increase their number during fetal development. The cellular origins of fetal Leydig progenitors and how they are maintained remain largely unknown. Here we show that Notch-active, Nestin-positive perivascular cells in the fetal testis are a multipotent progenitor population, giving rise to Leydig cells, pericytes, and smooth muscle cells. When vasculature is disrupted, perivascular progenitor cells fail to be maintained and excessive Leydig cell differentiation occurs, demonstrating that blood vessels are a critical component of the niche that maintains interstitial progenitor cells. Additionally, our data strongly supports a model in which fetal Leydig cell differentiation occurs by at least two different means, with each having unique progenitor origins and distinct requirements for Notch signaling to maintain the progenitor population.

          Abstract

          Leydig cells are steroidogenic cells in the testes and produce the androgens required for male development and spermatogenesis. Here the authors show that a multipotent progenitor population producing Leydig cells, pericytes and smooth muscle cells is maintained in a perivascular niche within the mouse fetal testis.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety.

          The glucocorticoid receptor (Gr, encoded by the gene Grl1) controls transcription of target genes both directly by interaction with DNA regulatory elements and indirectly by cross-talk with other transcription factors. In response to various stimuli, including stress, glucocorticoids coordinate metabolic, endocrine, immune and nervous system responses and ensure an adequate profile of transcription. In the brain, Gr has been proposed to modulate emotional behaviour, cognitive functions and addictive states. Previously, these aspects were not studied in the absence of functional Gr because inactivation of Grl1 in mice causes lethality at birth (F.T., C.K. and G.S., unpublished data). Therefore, we generated tissue-specific mutations of this gene using the Cre/loxP -recombination system. This allowed us to generate viable adult mice with loss of Gr function in selected tissues. Loss of Gr function in the nervous system impairs hypothalamus-pituitary-adrenal (HPA)-axis regulation, resulting in increased glucocorticoid (GC) levels that lead to symptoms reminiscent of those observed in Cushing syndrome. Conditional mutagenesis of Gr in the nervous system provides genetic evidence for the importance of Gr signalling in emotional behaviour because mutant animals show an impaired behavioural response to stress and display reduced anxiety.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nestin expression--a property of multi-lineage progenitor cells?

            Tissue-specific progenitor cells are characterized by proliferation and differentiation, but, in contrast to embryonic stem (ES) cells, have limited capacities for self-renewal and no tumourigenic potential. These latter traits make progenitor cells an ideal source for regenerative cell therapies. In this review, we describe what is currently known about nestin, an intermediate filament first identified in neuroepithelial stem cells. During embryogenesis, nestin is expressed in migrating and proliferating cells, whereas in adult tissues, nestin is mainly restricted to areas of regeneration. We show that nestin is abundant in ES-derived progenitor cells that have the potential to develop into neuroectodermal, endodermal and mesodermal lineages. Although it remains unclear what factors regulate in vitro and in vivo expression of nestin, we conclude that nestin represents a characteristic marker of multi-lineage progenitor cells and suggest that its presence in cells may indicate multi-potentiality and regenerative potential.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans.

              Male embryonic mice with mutations in the X-linked aristaless-related homeobox gene (Arx) developed with small brains due to suppressed proliferation and regional deficiencies in the forebrain. These mice also showed aberrant migration and differentiation of interneurons containing gamma-aminobutyric acid (GABAergic interneurons) in the ganglionic eminence and neocortex as well as abnormal testicular differentiation. These characteristics recapitulate some of the clinical features of X-linked lissencephaly with abnormal genitalia (XLAG) in humans. We found multiple loss-of-function mutations in ARX in individuals affected with XLAG and in some female relatives, and conclude that mutation of ARX causes XLAG. The present report is, to our knowledge, the first to use phenotypic analysis of a knockout mouse to identify a gene associated with an X-linked human brain malformation.
                Bookmark

                Author and article information

                Contributors
                tony.defalco@cchmc.org
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                30 October 2018
                30 October 2018
                2018
                : 9
                : 4519
                Affiliations
                [1 ]ISNI 0000 0000 9025 8099, GRID grid.239573.9, Division of Reproductive Sciences, , Cincinnati Children’s Hospital Medical Center, ; 3333 Burnet Avenue, MLC 7045, Cincinnati, OH 45229 USA
                [2 ]ISNI 0000 0001 2179 9593, GRID grid.24827.3b, Department of Pediatrics, , University of Cincinnati College of Medicine, ; 3230 Eden Avenue, Suite E-870, Cincinnati, OH 45267 USA
                Article
                6996
                10.1038/s41467-018-06996-3
                6207726
                30375389
                ed40a8b5-9dcb-41a3-94bc-3bc0c707ab8e
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 4 April 2018
                : 6 October 2018
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized
                Uncategorized

                Comments

                Comment on this article