Venom immunotherapy (VIT) is administered to allergic patients to reduce the risk of dangerous systemic reactions following an insect sting. To better understand the mechanism of this treatment and its impact on the human organism, we analysed serum proteomic patterns obtained at five time-points from Hymenoptera-venom-allergic patients undergoing VIT. For statistical analyses, patients were additionally divided into two groups (high responders and low responders) according to serum sIgG4 levels. VIT was found to be associated with changes in seven proteins: the fibrinogen alpha chain, complement C4-A, complement C3, filamin-B, kininogen-1, myosin-9 and inter-alpha-trypsin inhibitor heavy chain H1. The number of discriminative m/z (mass-to-charge ratio) features increased up to the 90th day of VIT, which may be associated with the development of immunity after the administration of increased venom doses. It may also suggest that during VIT, there may occur processes involved not only in protein synthesis but also in protein degradation (caused by proteolytic venom components). The results are consistent with measured serum sIgG4 levels, which increased from 2.04 mgA/I at baseline to 7.25 mgA/I at 90 days. Moreover, the major proteomic changes were detected separately in the high responder group. This may suggest that changes in protein–peptide profiles reflect the actual response to VIT.