38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Unravelling the biology of SCLC: implications for therapy

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Small-cell lung cancer (SCLC) is an aggressive malignancy associated with a poor prognosis. First-line treatment has remained unchanged for decades, and a paucity of effective treatment options exists for recurrent disease. Nonetheless, advances in our understanding of SCLC biology have led to the development of novel experimental therapies. Poly [ADP-ribose] polymerase (PARP) inhibitors have shown promise in preclinical models, and are being clinically tested in combination with cytotoxic therapies and inhibitors of cell-cycle checkpoints. Preclinical data indicate that targeting of histone-lysine N-methyltransferase EZH2, a regulator of chromatin remodelling implicated in acquired therapeutic resistance, might augment and prolong chemotherapy responses. High expression of the inhibitory Notch ligand Delta-like protein 3 (DLL3) in most SCLCs has been linked to expression of Achaetescute homologue 1 (ASCL1; also known as ASH-1), a key transcription factor driving SCLC oncogenesis; encouraging preclinical and clinical activity has been demonstrated for an anti-DLL3-antibody–drug conjugate. The immune microenvironment of SCLC seems to be distinct from that of other solid tumours, with few tumour-infiltrating lymphocytes and low levels of the immune-checkpoint protein programmed cell death 1 ligand 1 (PD-L1). Nonetheless, immunotherapy with immune-checkpoint inhibitors holds promise for patients with this disease, independent of PD-L1 status. Herein, we review the progress made in uncovering aspects of the biology of SCLC and its microenvironment that are defining new therapeutic strategies and offering renewed hope for patients.

          Graphical Abstract

          For three decades, the treatment of small-cell lung cancer (SCLC) has remained essentially unchanged, and patient outcomes remain dismal. In the past 5 years, however, advances in our understanding of the disease, at the molecular level, have resulted in the development of new therapeutic strategies, encompassing immunotherapies and novel molecularly targeted agents. Herein, authors review the breakthroughs that hold the promise to improve SCLC outcomes.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: not found

          PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors.

          Vaccination with irradiated B16 melanoma cells expressing either GM-CSF (Gvax) or Flt3-ligand (Fvax) combined with antibody blockade of the negative T-cell costimulatory receptor cytotoxic T-lymphocyte antigen-4 (CTLA-4) promotes rejection of preimplanted tumors. Despite CTLA-4 blockade, T-cell proliferation and cytokine production can be inhibited by the interaction of programmed death-1 (PD-1) with its ligands PD-L1 and PD-L2 or by the interaction of PD-L1 with B7-1. Here, we show that the combination of CTLA-4 and PD-1 blockade is more than twice as effective as either alone in promoting the rejection of B16 melanomas in conjunction with Fvax. Adding alphaPD-L1 to this regimen results in rejection of 65% of preimplanted tumors vs. 10% with CTLA-4 blockade alone. Combination PD-1 and CTLA-4 blockade increases effector T-cell (Teff) infiltration, resulting in highly advantageous Teff-to-regulatory T-cell ratios with the tumor. The fraction of tumor-infiltrating Teffs expressing CTLA-4 and PD-1 increases, reflecting the proliferation and accumulation of cells that would otherwise be anergized. Combination blockade also synergistically increases Teff-to-myeloid-derived suppressor cell ratios within B16 melanomas. IFN-gamma production increases in both the tumor and vaccine draining lymph nodes, as does the frequency of IFN-gamma/TNF-alpha double-producing CD8(+) T cells within the tumor. These results suggest that combination blockade of the PD-1/PD-L1- and CTLA-4-negative costimulatory pathways allows tumor-specific T cells that would otherwise be inactivated to continue to expand and carry out effector functions, thereby shifting the tumor microenvironment from suppressive to inflammatory.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial.

            Olaparib is a novel, orally active poly(ADP-ribose) polymerase (PARP) inhibitor that induces synthetic lethality in homozygous BRCA-deficient cells. We aimed to assess the efficacy and safety of olaparib for treatment of advanced ovarian cancer in patients with BRCA1 or BRCA2 mutations. In this international, multicentre, phase 2 study, we enrolled two sequential cohorts of women (aged >or=18 years) with confirmed genetic BRCA1 or BRCA2 mutations, and recurrent, measurable disease. The study was undertaken in 12 centres in Australia, Germany, Spain, Sweden, and the USA. The first cohort (n=33) was given continuous oral olaparib at the maximum tolerated dose of 400 mg twice daily, and the second cohort (n=24) was given continuous oral olaparib at 100 mg twice daily. The primary efficacy endpoint was objective response rate (ORR). This study is registered with ClinicalTrials.gov, number NCT00494442. Patients had been given a median of three (range 1-16) previous chemotherapy regimens. ORR was 11 (33%) of 33 patients (95% CI 20-51) in the cohort assigned to olaparib 400 mg twice daily, and three (13%) of 24 (4-31) in the cohort assigned to 100 mg twice daily. In patients given olaparib 400 mg twice daily, the most frequent causally related adverse events were nausea (grade 1 or 2, 14 [42%]; grade 3 or 4, two [6%]), fatigue (grade 1 or 2, ten [30%]; grade 3 or 4, one [3%]), and anaemia (grade 1 or two, five [15%]; grade 3 or 4, one [3%]). The most frequent causally related adverse events in the cohort given 100 mg twice daily were nausea (grade 1 or 2, seven [29%]; grade 3 or 4, two [8%]) and fatigue (grade 1 or 2, nine [38%]; none grade 3 or 4). Findings from this phase 2 study provide positive proof of concept of the efficacy and tolerability of genetically targeted treatment with olaparib in BRCA-mutated advanced ovarian cancer. AstraZeneca. Copyright 2010 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Prophylactic cranial irradiation for patients with small-cell lung cancer in complete remission. Prophylactic Cranial Irradiation Overview Collaborative Group.

              Prophylactic cranial irradiation reduces the incidence of brain metastasis in patients with small-cell lung cancer. Whether this treatment, when given to patients in complete remission, improves survival is not known. We performed a meta-analysis to determine whether prophylactic cranial irradiation prolongs survival. We analyzed individual data on 987 patients with small-cell lung cancer in complete remission who took part in seven trials that compared prophylactic cranial irradiation with no prophylactic cranial irradiation. The main end point was survival. The relative risk of death in the treatment group as compared with the control group was 0.84 (95 percent confidence interval, 0.73 to 0.97; P= 0.01), which corresponds to a 5.4 percent increase in the rate of survival at three years (15.3 percent in the control group vs. 20.7 percent in the treatment group). Prophylactic cranial irradiation also increased the rate of disease-free survival (relative risk of recurrence or death, 0.75; 95 percent confidence interval, 0.65 to 0.86; P<0.001) and decreased the cumulative incidence of brain metastasis (relative risk, 0.46; 95 percent confidence interval, 0.38 to 0.57; P<0.001). Larger doses of radiation led to greater decreases in the risk of brain metastasis, according to an analysis of four total doses (8 Gy, 24 to 25 Gy, 30 Gy, and 36 to 40 Gy) (P for trend=0.02), but the effect on survival did not differ significantly according to the dose. We also identified a trend (P=0.01) toward a decrease in the risk of brain metastasis with earlier administration of cranial irradiation after the initiation of induction chemotherapy. Prophylactic cranial irradiation improves both overall survival and disease-free survival among patients with small-cell lung cancer in complete remission.
                Bookmark

                Author and article information

                Journal
                101500077
                35768
                Nat Rev Clin Oncol
                Nat Rev Clin Oncol
                Nature reviews. Clinical oncology
                1759-4774
                1759-4782
                28 February 2018
                23 May 2017
                September 2017
                01 September 2018
                : 14
                : 9
                : 549-561
                Affiliations
                [1 ]Department of Medicine, Memorial Sloan Kettering Cancer Center, 300 East 66th Street, New York, New York 10065, USA
                [2 ]Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
                [3 ]New York University School of Medicine, 550 1st Avenue, New York, New York 10016, USA
                [4 ]Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 300 East 66th Street, New York, New York 10065, USA
                [5 ]Weill Cornell Medical College, 1300 York Avenue, New York, New York 10065, USA
                Author notes
                Correspondence to: J.T.P. and C.M.R. poirierj@ 123456mskcc.org , rudinc@ 123456mskcc.org
                Article
                PMC5843484 PMC5843484 5843484 nihpa946711
                10.1038/nrclinonc.2017.71
                5843484
                28534531
                52e328b2-a687-4779-9676-542e8e753a77
                History
                Categories
                Article

                Comments

                Comment on this article