11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      METTL14-regulated PI3K/Akt signaling pathway via PTEN affects HDAC5-mediated epithelial–mesenchymal transition of renal tubular cells in diabetic kidney disease

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Histone deacetylase 5 (HDAC5) belongs to class II HDAC subfamily and is reported to be increased in the kidneys of diabetic patients and animals. However, little is known about its function and the exact mechanism in diabetic kidney disease (DKD). Here, we found that HDAC5 was located in renal glomeruli and tubular cells, and significantly upregulated in diabetic mice and UUO mice, especially in renal tubular cells and interstitium. Knockdown of HDAC5 ameliorated high glucose-induced epithelial–mesenchymal transition (EMT) of HK2 cells, indicated in the increased E-cadherin and decreased α-SMA, via the downregulation of TGF-β1. Furthermore, HDAC5 expression was regulated by PI3K/Akt signaling pathway and inhibition of PI3K/Akt pathway by LY294002 treatment or Akt phosphorylation mutation reduced HDAC5 and TGF-β1 expression in vitro high glucose-cultured HK2 cells. Again, high glucose stimulation downregulated total m6A RNA methylation level of HK2 cells. Then, m6A demethylase inhibitor MA2 treatment decreased Akt phosphorylation, HDAC5, and TGF-β1 expression in high glucose-cultured HK2 cells. In addition, m6A modification-associated methylase METTL3 and METTL14 were decreased by high glucose at the levels of mRNA and protein. METTL14 not METTL3 overexpression led to PI3K/Akt pathway inactivation in high glucose-treated HK2 cells by enhancing PTEN, followed by HDAC5 and TGF-β1 expression downregulation. Finally, in vivo HDACs inhibitor TSA treatment alleviated extracellular matrix accumulation in kidneys of diabetic mice, accompanied with HDAC5, TGF-β1, and α-SMA expression downregulation. These above data suggest that METTL14-regulated PI3K/Akt signaling pathway via PTEN affected HDAC5-mediated EMT of renal tubular cells in diabetic kidney disease.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          The N 6 -methyladenosine (m 6 A)-forming enzyme METTL3 controls myeloid differentiation of normal and leukemia cells

          N 6-methyladenosine (m6A) is an abundant nucleotide modification in mRNA that is required for the differentiation of mouse embryonic stem cells. However, it remains unknown whether m6A controls differentiation of normal and/or malignant myeloid hematopoietic cells. Here we show that shRNA-mediated depletion of the m6A-forming enzyme METTL3 in human hematopoietic stem/progenitor cells promotes differentiation coupled with reduced proliferation. Conversely, overexpression of wild-type METTL3, but not the catalytic-dead form of METTL3, inhibits differentiation and increases cell growth. METTL3 mRNA and protein is expressed more abundantly in acute myeloid leukemia (AML) cells compared to healthy hematopoietic stem/progenitor cells and other types of tumors. Furthermore, METTL3 depletion in humanmyeloid leukemia cell lines induces differentiation and apoptosis and delays leukemia in recipient mice in vivo. Single-nucleotide resolution mapping of m6A coupled with ribosome profiling reveals that m6A promotes the translation of c-MYC, BCL2 and PTEN mRNAs in human myeloid leukemia MOLM13 cells. Moreover, loss of METTL3 leads to increased levels of pAKT, which contributes to the differentiation effects of METTL3 depletion. Overall these results provide a rationale for therapeutic targeting of METTL3 in myeloid leukemia.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            m 6 A mRNA methylation regulates AKT activity to promote the proliferation and tumorigenicity of endometrial cancer

            N 6-methyladenosine (m6A) mRNA methylation is a gene regulatory mechanism affecting cell differentiation and proliferation in development and cancer. To study the roles of m6A mRNA methylation in cell proliferation and tumorigenicity, we investigated human endometrial cancer in which a hotspot R298P mutation is present in a key component of the methyltransferase complex (METTL14). We found ~70% of endometrial tumors exhibit reductions in m6A methylation that are likely due to either this METTL14 mutation or reduced expression of METTL3, another component of the methyltransferase complex. These changes lead to increased proliferation and tumorigenicity of endometrial cancer cells through activation of the AKT pathway. Reductions in m6A methylation lead to decreased expression of the negative AKT regulator PHLPP2 and increased expression of the positive AKT regulator mTORC2. Together, these results reveal reduced m6A mRNA methylation as an oncogenic mechanism in endometrial cancer and identify m6A methylation as a regulator of AKT signaling.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Reduced m6A modification predicts malignant phenotypes and augmented Wnt/PI3K‐Akt signaling in gastric cancer

              Abstract Background As the most abundant epigenetic modification on mRNAs and long non‐coding RNAs, N6‐methyladenosine (m6A) modification extensively exists in mammalian cells. Controlled by writers (methyltransferases), readers (signal transducers), and erasers (demethylases), m6A influences mRNA structure, maturation, and stability, thus negatively regulating protein expression in a post‐translational manner. Nevertheless, current understanding of m6A's roles in tumorigenesis, especially in gastric cancer (GC) remains to be unveiled. In this study, we assessed m6A's clinicopathological relevance to GC and explored the underlying mechanisms. Methods By referring to a proteomics‐based GC cohort we previously generated and the TCGA‐GC cohort, we merged expressions of canonical m6A writers (METTL3/METTL14), readers (YTHDF1/YTHDF2/YTHDF3), and erasers (ALKBH5/FTO), respectively, as W, R, and E signatures to represent m6A modification. We stratified patients according to these signatures to decipher m6A's associations with crucial mutations, prognosis, and clinical indexes. m6A's biological functions in GC were predicted by gene set enrichment analysis (GSEA) and validated by in vitro experiments. Results We discovered that W and R were potential tumor suppressive signatures, while E was a potential oncogenic signature in GC. According to W/R/E stratifications, patients with low m6A‐indications were accompanied with higher mutations of specific genes (CDH1, AR, GLI3, SETBP1, RHOA, MUC6, and TP53) and also demonstrated adverse clinical outcomes. GSEA suggested that reduced m6A was correlated with oncogenic signaling and phenotypes. Through in vitro experiments, we proved that m6A suppression (represented by METTL14 knockdown) promoted GC cell proliferation and invasiveness through activating Wnt and PI3K‐Akt signaling, while m6A elevation (represented by FTO knockdown) reversed these phenotypical and molecular changes. m6A may also be involved in interferon signaling and immune responses of GC. Conclusions Our work demonstrated that low‐m6A signatures predicted adverse clinicopathological features of GC, while the reduction of RNA m6A methylation activated oncogenic Wnt/PI3K‐Akt signaling and promoted malignant phenotypes of GC cells.
                Bookmark

                Author and article information

                Contributors
                lifan198803@126.com
                haojun2004@hotmail.com
                Journal
                Cell Death Dis
                Cell Death Dis
                Cell Death & Disease
                Nature Publishing Group UK (London )
                2041-4889
                4 January 2021
                4 January 2021
                January 2021
                : 12
                : 1
                : 32
                Affiliations
                [1 ]GRID grid.256883.2, ISNI 0000 0004 1760 8442, Department of Pathology, , Hebei Medical University, ; Shijiazhuang, China
                [2 ]Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, China
                [3 ]GRID grid.256883.2, ISNI 0000 0004 1760 8442, Center of Metabolic Diseases and Cancer Research, , Institute of Medical and Health Science of Hebei Medical University, ; Shijiazhuang, China
                [4 ]GRID grid.452209.8, Department of Pathology, , The Third Hospital of Hebei Medical University, ; Shijiazhuang, China
                Author information
                http://orcid.org/0000-0002-1213-0449
                Article
                3312
                10.1038/s41419-020-03312-0
                7791055
                33414476
                ba5aa433-2694-4f4f-8e7e-76a4ab1937d6
                © The Author(s) 2021

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 12 September 2020
                : 29 November 2020
                : 1 December 2020
                Funding
                Funded by: Foundation of Hebei Province Education Department ZD2018251 Natural Science Foundation of Hebei Province H2018206096
                Funded by: Natural Science Foundation of Hebei Province H2019206045)
                Funded by: National Natural Science Foundation of China 81971182 Natural Science Foundation of Hebei Province H2019206463
                Categories
                Article
                Custom metadata
                © The Author(s) 2021

                Cell biology
                epithelial-mesenchymal transition,insulin signalling,diabetes complications
                Cell biology
                epithelial-mesenchymal transition, insulin signalling, diabetes complications

                Comments

                Comment on this article