39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      TACE antagonists blocking ACE2 shedding caused by the spike protein of SARS-CoV are candidate antiviral compounds

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Because outbreaks of severe acute respiratory syndrome coronavirus (SARS-CoV) might reemerge, identifying antiviral compounds is of key importance. Previously, we showed that the cellular factor TNF-α converting enzyme (TACE), activated by the spike protein of SARS-CoV (SARS-S protein), was positively involved in viral entry, implying that TACE is a possible target for developing antiviral compounds. To demonstrate this possibility, we here tested the effects of TACE inhibitors on viral entry. In vitro and in vivo data revealed that the TACE inhibitor TAPI-2 attenuated entry of both pseudotyped virus expressing the SARS-S protein in a lentiviral vector backbone and infectious SARS-CoV. TAPI-2 blocked both the SARS-S protein-induced shedding of angiotensin-converting enzyme 2 (ACE2), a receptor of SARS-CoV, and TNF-α production in lung tissues. Since the downregulation of ACE2 by SARS-S protein was proposed as an etiological event in the severe clinical manifestations, our data suggest that TACE antagonists block SARS-CoV infection and also attenuate its severe clinical outcome.

          Related collections

          Most cited references8

          • Record: found
          • Abstract: found
          • Article: not found

          A novel coronavirus associated with severe acute respiratory syndrome.

          A worldwide outbreak of severe acute respiratory syndrome (SARS) has been associated with exposures originating from a single ill health care worker from Guangdong Province, China. We conducted studies to identify the etiologic agent of this outbreak. We received clinical specimens from patients in seven countries and tested them, using virus-isolation techniques, electron-microscopical and histologic studies, and molecular and serologic assays, in an attempt to identify a wide range of potential pathogens. None of the previously described respiratory pathogens were consistently identified. However, a novel coronavirus was isolated from patients who met the case definition of SARS. Cytopathological features were noted in Vero E6 cells inoculated with a throat-swab specimen. Electron-microscopical examination revealed ultrastructural features characteristic of coronaviruses. Immunohistochemical and immunofluorescence staining revealed reactivity with group I coronavirus polyclonal antibodies. Consensus coronavirus primers designed to amplify a fragment of the polymerase gene by reverse transcription-polymerase chain reaction (RT-PCR) were used to obtain a sequence that clearly identified the isolate as a unique coronavirus only distantly related to previously sequenced coronaviruses. With specific diagnostic RT-PCR primers we identified several identical nucleotide sequences in 12 patients from several locations, a finding consistent with a point-source outbreak. Indirect fluorescence antibody tests and enzyme-linked immunosorbent assays made with the new isolate have been used to demonstrate a virus-specific serologic response. This virus may never before have circulated in the U.S. population. A novel coronavirus is associated with this outbreak, and the evidence indicates that this virus has an etiologic role in SARS. Because of the death of Dr. Carlo Urbani, we propose that our first isolate be named the Urbani strain of SARS-associated coronavirus. Copyright 2003 Massachusetts Medical Society
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus.

            Angiotensin-converting enzyme 2 (ACE2) is a receptor for SARS-CoV, the novel coronavirus that causes severe acute respiratory syndrome [Li, W. Moore, M. J., Vasilieva, N., Sui, J., Wong, S. K., Berne, M. A., Somasundaran, M., Sullivan, J. L., Luzuriaga, K., Greenough, T. C., et al. (2003) Nature 426, 450-454]. We have identified a different human cellular glycoprotein that can serve as an alternative receptor for SARS-CoV. A human lung cDNA library in vesicular stomatitis virus G pseudotyped retrovirus was transduced into Chinese hamster ovary cells, and the cells were sorted for binding of soluble SARS-CoV spike (S) glycoproteins, S(590) and S(1180). Clones of transduced cells that bound SARS-CoV S glycoprotein were inoculated with SARS-CoV, and increases in subgenomic viral RNA from 1-16 h or more were detected by multiplex RT-PCR in four cloned cell lines. Sequencing of the human lung cDNA inserts showed that each of the cloned cell lines contained cDNA that encoded human CD209L, a C-type lectin (also called L-SIGN). When the cDNA encoding CD209L from clone 2.27 was cloned and transfected into Chinese hamster ovary cells, the cells expressed human CD209L glycoprotein and became susceptible to infection with SARS-CoV. Immunohistochemistry showed that CD209L is expressed in human lung in type II alveolar cells and endothelial cells, both potential targets for SARS-CoV. Several other enveloped viruses including Ebola and Sindbis also use CD209L as a portal of entry, and HIV and hepatitis C virus can bind to CD209L on cell membranes but do not use it to mediate virus entry. Our data suggest that the large S glycoprotein of SARS-CoV may use both ACE2 and CD209L in virus infection and pathogenesis.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The ADAMs family of metalloproteases: multidomain proteins with multiple functions.

                Bookmark

                Author and article information

                Journal
                Antiviral Research
                Antiviral Research
                Elsevier BV
                01663542
                March 2010
                March 2010
                : 85
                : 3
                : 551-555
                Article
                10.1016/j.antiviral.2009.12.001
                bbbe284d-4351-44d2-822b-1b7cfb2e60d4
                © 2010

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article