17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sham treatment effects in manual therapy trials on back pain patients: a systematic review and pairwise meta-analysis

      , , ,
      BMJ Open
      BMJ

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          To assess the effects and reliability of sham procedures in manual therapy (MT) trials in the treatment of back pain (BP) in order to provide methodological guidance for clinical trial development.

          Design

          Systematic review and meta-analysis.

          Methods and analysis

          Different databases were screened up to 20 August 2020. Randomised controlled trials involving adults affected by BP (cervical and lumbar), acute or chronic, were included.

          Hand contact sham treatment (ST) was compared with different MT (physiotherapy, chiropractic, osteopathy, massage, kinesiology and reflexology) and to no treatment. Primary outcomes were BP improvement, success of blinding and adverse effect (AE). Secondary outcomes were number of drop-outs. Dichotomous outcomes were analysed using risk ratio (RR), continuous using mean difference (MD), 95% CIs. The minimal clinically important difference was 30 mm changes in pain score.

          Results

          24 trials were included involving 2019 participants. Very low evidence quality suggests clinically insignificant pain improvement in favour of MT compared with ST (MD 3.86, 95% CI 3.29 to 4.43) and no differences between ST and no treatment (MD -5.84, 95% CI −20.46 to 8.78).

          ST reliability shows a high percentage of correct detection by participants (ranged from 46.7% to 83.5%), spinal manipulation being the most recognised technique.

          Low quality of evidence suggests that AE and drop-out rates were similar between ST and MT (RR AE=0.84, 95% CI 0.55 to 1.28, RR drop-outs=0.98, 95% CI 0.77 to 1.25). A similar drop-out rate was reported for no treatment (RR=0.82, 95% 0.43 to 1.55).

          Conclusions

          MT does not seem to have clinically relevant effect compared with ST. Similar effects were found with no treatment. The heterogeneousness of sham MT studies and the very low quality of evidence render uncertain these review findings.

          Future trials should develop reliable kinds of ST, similar to active treatment, to ensure participant blinding and to guarantee a proper sample size for the reliable detection of clinically meaningful treatment effects.

          PROSPERO registration number

          CRD42020198301.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement

          Systematic reviews should build on a protocol that describes the rationale, hypothesis, and planned methods of the review; few reviews report whether a protocol exists. Detailed, well-described protocols can facilitate the understanding and appraisal of the review methods, as well as the detection of modifications to methods and selective reporting in completed reviews. We describe the development of a reporting guideline, the Preferred Reporting Items for Systematic reviews and Meta-Analyses for Protocols 2015 (PRISMA-P 2015). PRISMA-P consists of a 17-item checklist intended to facilitate the preparation and reporting of a robust protocol for the systematic review. Funders and those commissioning reviews might consider mandating the use of the checklist to facilitate the submission of relevant protocol information in funding applications. Similarly, peer reviewers and editors can use the guidance to gauge the completeness and transparency of a systematic review protocol submitted for publication in a journal or other medium.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials.

            Overwhelming evidence shows the quality of reporting of randomised controlled trials (RCTs) is not optimal. Without transparent reporting, readers cannot judge the reliability and validity of trial findings nor extract information for systematic reviews. Recent methodological analyses indicate that inadequate reporting and design are associated with biased estimates of treatment effects. Such systematic error is seriously damaging to RCTs, which are considered the gold standard for evaluating interventions because of their ability to minimise or avoid bias. A group of scientists and editors developed the CONSORT (Consolidated Standards of Reporting Trials) statement to improve the quality of reporting of RCTs. It was first published in 1996 and updated in 2001. The statement consists of a checklist and flow diagram that authors can use for reporting an RCT. Many leading medical journals and major international editorial groups have endorsed the CONSORT statement. The statement facilitates critical appraisal and interpretation of RCTs. During the 2001 CONSORT revision, it became clear that explanation and elaboration of the principles underlying the CONSORT statement would help investigators and others to write or appraise trial reports. A CONSORT explanation and elaboration article was published in 2001 alongside the 2001 version of the CONSORT statement. After an expert meeting in January 2007, the CONSORT statement has been further revised and is published as the CONSORT 2010 Statement. This update improves the wording and clarity of the previous checklist and incorporates recommendations related to topics that have only recently received recognition, such as selective outcome reporting bias. This explanatory and elaboration document-intended to enhance the use, understanding, and dissemination of the CONSORT statement-has also been extensively revised. It presents the meaning and rationale for each new and updated checklist item providing examples of good reporting and, where possible, references to relevant empirical studies. Several examples of flow diagrams are included. The CONSORT 2010 Statement, this revised explanatory and elaboration document, and the associated website (www.consort-statement.org) should be helpful resources to improve reporting of randomised trials. Copyright © 2010 Moher et al/Ottawa Hospital Research Institute. Published by Elsevier Ltd.. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Clinical importance of changes in chronic pain intensity measured on an 11-point numerical pain rating scale.

              Pain intensity is frequently measured on an 11-point pain intensity numerical rating scale (PI-NRS), where 0=no pain and 10=worst possible pain. However, it is difficult to interpret the clinical importance of changes from baseline on this scale (such as a 1- or 2-point change). To date, there are no data driven estimates for clinically important differences in pain intensity scales used for chronic pain studies. We have estimated a clinically important difference on this scale by relating it to global assessments of change in multiple studies of chronic pain. Data on 2724 subjects from 10 recently completed placebo-controlled clinical trials of pregabalin in diabetic neuropathy, postherpetic neuralgia, chronic low back pain, fibromyalgia, and osteoarthritis were used. The studies had similar designs and measurement instruments, including the PI-NRS, collected in a daily diary, and the standard seven-point patient global impression of change (PGIC), collected at the endpoint. The changes in the PI-NRS from baseline to the endpoint were compared to the PGIC for each subject. Categories of "much improved" and "very much improved" were used as determinants of a clinically important difference and the relationship to the PI-NRS was explored using graphs, box plots, and sensitivity/specificity analyses. A consistent relationship between the change in PI-NRS and the PGIC was demonstrated regardless of study, disease type, age, sex, study result, or treatment group. On average, a reduction of approximately two points or a reduction of approximately 30% in the PI-NRS represented a clinically important difference. The relationship between percent change and the PGIC was also consistent regardless of baseline pain, while higher baseline scores required larger raw changes to represent a clinically important difference. The application of these results to future studies may provide a standard definition of clinically important improvement in clinical trials of chronic pain therapies. Use of a standard outcome across chronic pain studies would greatly enhance the comparability, validity, and clinical applicability of these studies.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                BMJ Open
                BMJ Open
                BMJ
                2044-6055
                2044-6055
                May 04 2021
                May 2021
                May 04 2021
                May 2021
                : 11
                : 5
                : e045106
                Article
                10.1136/bmjopen-2020-045106
                f771cfb2-77b1-46a0-97be-5430c00560c1
                © 2021

                Free to read

                http://creativecommons.org/licenses/by-nc/4.0/

                History

                Comments

                Comment on this article