4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Blockchain-enabled Federated Learning: A Survey

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Federated learning (FL) has experienced a boom in recent years, which is jointly promoted by the prosperity of machine learning and Artificial Intelligence along with emerging privacy issues. In the FL paradigm, a central server and local end devices maintain the same model by exchanging model updates instead of raw data, with which the privacy of data stored on end devices is not directly revealed. In this way, the privacy violation caused by the growing collection of sensitive data can be mitigated. However, the performance of FL with a central server is reaching a bottleneck, while new threats are emerging simultaneously. There are various reasons, among which the most significant ones are centralized processing, data falsification, and lack of incentives. To accelerate the proliferation of FL, blockchain-enabled FL has attracted substantial attention from both academia and industry. A considerable number of novel solutions are devised to meet the emerging demands of diverse scenarios. Blockchain-enabled FL provides both theories and techniques to improve the performance of FL from various perspectives. In this survey, we will comprehensively summarize and evaluate existing variants of blockchain-enabled FL, identify the emerging challenges, and propose potentially promising research directions in this under-explored domain.

          Related collections

          Most cited references180

          • Record: found
          • Abstract: found
          • Article: not found

          Deep learning.

          Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Machine learning: Trends, perspectives, and prospects.

            Machine learning addresses the question of how to build computers that improve automatically through experience. It is one of today's most rapidly growing technical fields, lying at the intersection of computer science and statistics, and at the core of artificial intelligence and data science. Recent progress in machine learning has been driven both by the development of new learning algorithms and theory and by the ongoing explosion in the availability of online data and low-cost computation. The adoption of data-intensive machine-learning methods can be found throughout science, technology and commerce, leading to more evidence-based decision-making across many walks of life, including health care, manufacturing, education, financial modeling, policing, and marketing.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The Algorithmic Foundations of Differential Privacy

                Bookmark

                Author and article information

                Contributors
                Journal
                ACM Computing Surveys
                ACM Comput. Surv.
                Association for Computing Machinery (ACM)
                0360-0300
                1557-7341
                April 30 2023
                November 21 2022
                April 30 2023
                : 55
                : 4
                : 1-35
                Affiliations
                [1 ]Data61, Commonwealth Scientific and Industrial Research Organisation, Australia
                [2 ]School of Information Technology, Deakin University, Australia
                [3 ]School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, China
                [4 ]Qilu University of Technology (Shandong Academy of Sciences), and Shandong Computer Science Center (National Supercomputer Center in Jinan), China
                Article
                10.1145/3524104
                cb1a2aa1-03a1-4f84-b5fd-3402a1e02d2c
                © 2023
                History

                Comments

                Comment on this article