45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Parathyroid Hormone Induces Bone Cell Motility and Loss of Mature Osteocyte Phenotype through L-Calcium Channel Dependent and Independent Mechanisms

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Parathyroid Hormone (PTH) can exert both anabolic and catabolic effects on the skeleton, potentially through expression of the PTH type1 receptor (PTH1R), which is highly expressed in osteocytes. To determine the cellular and molecular mechanisms responsible, we examined the effects of PTH on osteoblast to osteocyte differentiation using primary osteocytes and the IDG-SW3 murine cell line, which differentiate from osteoblast to osteocyte-like cells in vitro and express GFP under control of the dentin matrix 1 ( Dmp1) promoter. PTH treatment resulted in an increase in some osteoblast and early osteocyte markers and a decrease in mature osteocyte marker expression. The gene expression profile of PTH-treated Day 28 IDG-SW3 cells was similar to PTH treated primary osteocytes. PTH treatment induced striking changes in the morphology of the Dmp1-GFP positive cells in IDG-SW3 cultures and primary cells from Dmp1-GFP transgenic mice. The cells changed from a more dendritic to an elongated morphology and showed increased cell motility. E11/gp38 has been shown to be important for cell migration, however, deletion of the E11/gp38/podoplanin gene had no effect on PTH-induced motility. The effects of PTH on motility were reproduced using cAMP, but not with protein kinase A (PKA), exchange proteins activated by cAMP (Epac), protein kinase C (PKC) or phosphatidylinositol-4,5-bisphosphonate 3-kinase (Pi3K) agonists nor were they blocked by their antagonists. However, the effects of PTH were mediated through calcium signaling, specifically through L-type channels normally expressed in osteoblasts but decreased in osteocytes. PTH was shown to increase expression of this channel, but decrease the T-type channel that is normally more highly expressed in osteocytes. Inhibition of L-type calcium channel activity attenuated the effects of PTH on cell morphology and motility but did not prevent the downregulation of mature osteocyte marker expression. Taken together, these results show that PTH induces loss of the mature osteocyte phenotype and promotes the motility of these cells. These two effects are mediated through different mechanisms. The loss of phenotype effect is independent and the cell motility effect is dependent on calcium signaling.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Single-dose, placebo-controlled, randomized study of AMG 785, a sclerostin monoclonal antibody.

          Sclerostin, an osteocyte-secreted protein, negatively regulates osteoblasts and inhibits bone formation. In this first-in-human study, a sclerostin monoclonal antibody (AMG 785) was administered to healthy men and postmenopausal women. In this phase I, randomized, double-blind, placebo-controlled, ascending, single-dose study, 72 healthy subjects received AMG 785 or placebo (3:1) subcutaneously (0.1, 0.3, 1, 3, 5, or 10 mg/kg) or intravenously (1 or 5 mg/kg). Depending on dose, subjects were followed for up to 85 days. The effects of AMG 785 on safety and tolerability (primary objectives) and pharmacokinetics, bone turnover markers, and bone mineral density (secondary objectives) were evaluated. AMG 785 generally was well tolerated. One treatment-related serious adverse event of nonspecific hepatitis was reported and was resolved. No deaths or study discontinuations occurred. AMG 785 pharmacokinetics were nonlinear with dose. Dose-related increases in the bone-formation markers procollagen type 1 N-propeptide (P1NP), bone-specific alkaline phosphatase (BAP), and osteocalcin were observed, along with a dose-related decrease in the bone-resorption marker serum C-telopeptide (sCTx), resulting in a large anabolic window. In addition, statistically significant increases in bone mineral density of up to 5.3% at the lumbar spine and 2.8% at the total hip compared with placebo were observed on day 85. Six subjects in the higher-dose groups developed anti-AMG 785 antibodies, 2 of which were neutralizing, with no discernible effect on the pharmacokinetics or pharmacodynamics. In summary, single doses of AMG 785 generally were well tolerated, and the data support further clinical investigation of sclerostin inhibition as a potential therapeutic strategy for conditions that could benefit from increased bone formation. © 2011 American Society for Bone and Mineral Research.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Sclerostin Stimulates Osteocyte Support of Osteoclast Activity by a RANKL-Dependent Pathway

            Sclerostin is a product of mature osteocytes embedded in mineralised bone and is a negative regulator of bone mass and osteoblast differentiation. While evidence suggests that sclerostin has an anti-anabolic role, the possibility also exists that sclerostin has catabolic activity. To test this we treated human primary pre-osteocyte cultures, cells we have found are exquisitely sensitive to sclerostin, or mouse osteocyte-like MLO-Y4 cells, with recombinant human sclerostin (rhSCL) and measured effects on pro-catabolic gene expression. Sclerostin dose-dependently up-regulated the expression of receptor activator of nuclear factor kappa B (RANKL) mRNA and down-regulated that of osteoprotegerin (OPG) mRNA, causing an increase in the RANKL∶OPG mRNA ratio. To examine the effects of rhSCL on resulting osteoclastic activity, MLO-Y4 cells plated onto a bone-like substrate were primed with rhSCL for 3 days and then either mouse splenocytes or human peripheral blood mononuclear cells (PBMC) were added. This resulted in cultures with elevated osteoclastic resorption (approximately 7-fold) compared to untreated co-cultures. The increased resorption was abolished by co-addition of recombinant OPG. In co-cultures of MLO-Y4 cells with PBMC, SCL also increased the number and size of the TRAP-positive multinucleated cells formed. Importantly, rhSCL had no effect on TRAP-positive cell formation from monocultures of either splenocytes or PBMC. Further, rhSCL did not induce apoptosis of MLO-Y4 cells, as determined by caspase activity assays, demonstrating that the osteoclastic response was not driven by dying osteocytes. Together, these results suggest that sclerostin may have a catabolic action through promotion of osteoclast formation and activity by osteocytes, in a RANKL-dependent manner.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              SOST is a target gene for PTH in bone.

              Intermittent parathyroid hormone (PTH) application is an established pharmacological principle to stimulate bone formation. Yet, the molecular mechanisms underlying this bone anabolic action are not fully understood. Recently, SOST (sclerostin) was identified as a potent osteocyte expressed negative regulator of bone formation in vitro, in murine models and in patients with the bone overgrowth disorders Sclerosteosis and Van Buchem disease. Therefore, we have studied the impact of PTH on SOST regulation. First, we analyzed SOST expression during PTH-induced bone formation in a classical model of local bone formation. 8-month-old mice received intermittently 100 nM hPTH(1-34) or vehicle onto the calvaria for 5 days. PTH stimulated bone formation as assessed by fluorochrome-marker-based histomorphometry. SOST expression was reduced in PTH-treated calvariae 4 h after the last administration as evaluated by real-time quantitative PCR. Next, we observed a decrease of SOST expression in femoral cortical bone of 6-month-old rats following single subcutaneous systemic administration of 80 microg/kg PTH(1-34). Finally, we studied SOST mRNA expression in bone of 11-month-old osteopenic estrogen-deprived (OVX) rats following 8-week systemic intermittent administration of 5 microg/kg PTH(1-34). PTH-treated animals displayed increases in bone mineral density as detected by pQCT, while SOST mRNA levels were decreased compared to vehicle-treated OVX and SHAM controls. PTH decreased SOST expression also in vitro. 100 nM PTH(1-34) inhibited expression in mouse calvaria organ cultures and in osteoblastic UMR-106 cells within 6 h by 95%. An IC50 of 1 nM was determined for PTH(1-34) in UMR-106 cells, whereas the PTH antagonist (d-Trp12,Tyr34)-bPTH(7-34) did not efficiently reduce SOST expression. Furthermore, SOST inhibition by PTH was not blocked by the protein synthesis inhibitor cycloheximide, indicating direct regulation, and PTH did not influence SOST mRNA degradation, implying transcriptional regulation. Finally, we observed full suppression of SOST by the cAMP inducer forskolin, partial inhibition by ionomycin, and no effect with PMA, indicating that PTH action is mainly mediated via the cAMP/PKA pathway. In summary, we have shown that PTH directly inhibits SOST transcription in vivo and in vitro, suggesting that SOST regulation may play a role in mediating PTH action in bone.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                5 May 2015
                2015
                : 10
                : 5
                : e0125731
                Affiliations
                [1 ]Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
                [2 ]Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
                [3 ]Peridontics and Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas, United States of America
                Université de Lyon - Université Jean Monnet, FRANCE
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: MP SLD LFB. Performed the experiments: MP NZ SLD EDJ SH PV. Analyzed the data: SH MP. Contributed reagents/materials/analysis tools: DG YM. Wrote the paper: MP SLD LFB.

                [¤a]

                Current address: Department of Orthodontics, Shanghai Key Laboratory of Stomatology, Shanghai No. 9 Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China

                [¤b]

                Current address: Centre for Orthopaedic and Trauma Research, The University of Adelaide, Adelaide, Australia

                Article
                PONE-D-15-04366
                10.1371/journal.pone.0125731
                4420268
                25942444
                e79a06d5-7beb-49db-b082-5c4964f6f8d9
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 29 January 2015
                : 25 March 2015
                Page count
                Figures: 7, Tables: 1, Pages: 25
                Funding
                This work is supported by the National Institutes of Health NIA PO1AG039355 (LFB, SLD) and NIAMS. R01 AR051517 (SLD), R21 AR054449 (SLD) and NIAMS PO1AR046798 (LFB, SH). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article