42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Gut Bacteroides species in health and disease

      review-article
      a , b , a
      Gut Microbes
      Taylor & Francis
      Gut microbiome, Bacteroides, beneficial, pathogenic, carbohydrates, virulence factors

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          The functional diversity of the mammalian intestinal microbiome far exceeds that of the host organism, and microbial genes contribute substantially to the well-being of the host. However, beneficial gut organisms can also be pathogenic when present in the gut or other locations in the body. Among dominant beneficial bacteria are several species of Bacteroides, which metabolize polysaccharides and oligosaccharides, providing nutrition and vitamins to the host and other intestinal microbial residents. These topics and the specific organismal and molecular interactions that are known to be responsible for the beneficial and detrimental effects of Bacteroides species in humans comprise the focus of this review. The complexity of these interactions will be revealed.

          Related collections

          Most cited references177

          • Record: found
          • Abstract: found
          • Article: not found

          The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors.

          The discovery of Toll-like receptors (TLRs) as components that recognize conserved structures in pathogens has greatly advanced understanding of how the body senses pathogen invasion, triggers innate immune responses and primes antigen-specific adaptive immunity. Although TLRs are critical for host defense, it has become apparent that loss of negative regulation of TLR signaling, as well as recognition of self molecules by TLRs, are strongly associated with the pathogenesis of inflammatory and autoimmune diseases. Furthermore, it is now clear that the interaction between TLRs and recently identified cytosolic innate immune sensors is crucial for mounting effective immune responses. Here we describe the recent advances that have been made by research into the role of TLR biology in host defense and disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Revised Estimates for the Number of Human and Bacteria Cells in the Body

            Reported values in the literature on the number of cells in the body differ by orders of magnitude and are very seldom supported by any measurements or calculations. Here, we integrate the most up-to-date information on the number of human and bacterial cells in the body. We estimate the total number of bacteria in the 70 kg "reference man" to be 3.8·1013. For human cells, we identify the dominant role of the hematopoietic lineage to the total count (≈90%) and revise past estimates to 3.0·1013 human cells. Our analysis also updates the widely-cited 10:1 ratio, showing that the number of bacteria in the body is actually of the same order as the number of human cells, and their total mass is about 0.2 kg.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Introduction to the human gut microbiota

              The human gastrointestinal (GI) tract harbours a complex and dynamic population of microorganisms, the gut microbiota, which exert a marked influence on the host during homeostasis and disease. Multiple factors contribute to the establishment of the human gut microbiota during infancy. Diet is considered as one of the main drivers in shaping the gut microbiota across the life time. Intestinal bacteria play a crucial role in maintaining immune and metabolic homeostasis and protecting against pathogens. Altered gut bacterial composition (dysbiosis) has been associated with the pathogenesis of many inflammatory diseases and infections. The interpretation of these studies relies on a better understanding of inter-individual variations, heterogeneity of bacterial communities along and across the GI tract, functional redundancy and the need to distinguish cause from effect in states of dysbiosis. This review summarises our current understanding of the development and composition of the human GI microbiota, and its impact on gut integrity and host health, underlying the need for mechanistic studies focusing on host–microbe interactions.
                Bookmark

                Author and article information

                Journal
                Gut Microbes
                Gut Microbes
                Gut Microbes
                Taylor & Francis
                1949-0976
                1949-0984
                3 February 2021
                2021
                3 February 2021
                : 13
                : 1
                : 1-20
                Affiliations
                [a ]Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego; , USA
                [b ]Department of Microbiology and Molecular Genetics, Faculty of Life Sciences, University of Okara; ,Okara, Punjab Pakistan
                Author notes
                CONTACT Hassan Zafar h.zafar@ 123456uo.edu.pk
                Author information
                https://orcid.org/0000-0001-7600-0734
                https://orcid.org/0000-0001-5530-0017
                Article
                1848158
                10.1080/19490976.2020.1848158
                7872030
                33535896
                dc98a625-e5a2-433f-b441-7e35e89fdba0
                © 2021 The Author(s). Published with license by Taylor & Francis Group, LLC.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Page count
                Figures: 6, References: 179, Pages: 20
                Categories
                Review
                Review

                Microbiology & Virology
                gut microbiome,bacteroides,beneficial,pathogenic,carbohydrates,virulence factors

                Comments

                Comment on this article