55
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Understanding Apoptosis and Apoptotic Pathways Targeted Cancer Therapeutics.

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Various physiological processes involve appropriate tissue developmental process and homeostasis - the pathogenesis of several diseases connected with deregulatory apoptosis process. Apoptosis plays a crucial role in maintaining a balance between cell death and division, evasion of apoptosis results in the uncontrolled multiplication of cells leading to different diseases such as cancer. Currently, the development of apoptosis targeting anticancer drugs has gained much interest since cell death induced by apoptosis causes minimal inflammation. The understanding of complexities of apoptosis mechanism and how apoptosis is evolved by tumor cells to oppose cell death has focused research into the new strategies designed to induce apoptosis in cancer cells. This review focused on the underlying mechanism of apoptosis and the dysregulation of apoptosis modulators involved in the extrinsic and intrinsic apoptotic pathway, which include death receptors (DRs) proteins, cellular FLICE inhibitory proteins (c-FLIP), anti-apoptotic Bcl-2 proteins, inhibitors of apoptosis proteins (IAPs), tumor suppressor (p53) in cancer cells along with various current clinical approaches aimed to selectively induce apoptosis in cancer cells.

          Related collections

          Most cited references126

          • Record: found
          • Abstract: found
          • Article: not found

          Knocking down barriers: advances in siRNA delivery

          Key Points RNA interference (RNAi) is a fundamental pathway in eukaryotic cells by which sequence-specific small interfering RNA (siRNA) is able to silence genes through the destruction of complementary mRNA. RNAi is an important therapeutic tool that can be used to silence aberrant endogenous genes or to knockdown genes essential to the proliferation of infectious organisms. Delivery remains the central challenge to the therapeutic application of RNAi technology. Before siRNA can take effect in the cytoplasm of a target cell, it must be transported through the body to the target site without undergoing clearance or degradation. Currently, the most effective synthetic, non-viral delivery agents of siRNA are lipids, lipid-like materials and polymers. Various cationic agents including stable nucleic acid–lipid particles, lipidoids, cyclodextrin polymers and polyethyleneimine polymers have been used to achieve the successful systemic delivery of siRNA in mammals without inducing significant toxicity. Direct conjugation of delivery agents to siRNA can facilitate delivery. For example, cholesterol-modified siRNA enables targeting to the liver. RNAi therapeutics have progressed to the clinic, where studies are being conducted to determine siRNA efficacy in treating several diseases, including age-related macular degeneration and respiratory syncytial virus. Moving forward, it will be important to pay close attention to the potential nonspecific immunostimulatory effects of siRNA. Modifications to siRNA can be used to minimize stimulation of the immune system, and an increased emphasis must be placed on performing proper controls to ensure that therapeutic effects are sequence-specific.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis.

            Programmed cell death (PCD), referring to apoptosis, autophagy and programmed necrosis, is proposed to be death of a cell in any pathological format, when mediated by an intracellular program. These three forms of PCD may jointly decide the fate of cells of malignant neoplasms; apoptosis and programmed necrosis invariably contribute to cell death, whereas autophagy can play either pro-survival or pro-death roles. Recent bulk of accumulating evidence has contributed to a wealth of knowledge facilitating better understanding of cancer initiation and progression with the three distinctive types of cell death. To be able to decipher PCD signalling pathways may aid development of new targeted anti-cancer therapeutic strategies. Thus in this review, we present a brief outline of apoptosis, autophagy and programmed necrosis pathways and apoptosis-related microRNA regulation, in cancer. Taken together, understanding PCD and the complex interplay between apoptosis, autophagy and programmed necrosis may ultimately allow scientists and clinicians to harness the three types of PCD for discovery of further novel drug targets, in the future cancer treatment. © 2012 Blackwell Publishing Ltd.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Revisiting the hallmarks of cancer.

              The hallmarks of cancer described by Hanahan and Weinberg have proved seminal in our understanding of cancer's common traits and in rational drug design. Not free of critique and with understanding of different aspects of tumorigenesis coming into clearer focus in the recent years, we attempt to draw a more organized and updated picture of the cancer hallmarks. We define seven hallmarks of cancer: selective growth and proliferative advantage, altered stress response favoring overall survival, vascularization, invasion and metastasis, metabolic rewiring, an abetting microenvironment, and immune modulation, while highlighting some considerations for the future of the field.
                Bookmark

                Author and article information

                Journal
                Adv Pharm Bull
                Advanced pharmaceutical bulletin
                International Society for Phytocosmetic Sciences
                2228-5881
                2228-5881
                Jun 2019
                : 9
                : 2
                Affiliations
                [1 ] Institute of Marine Biotechnology, Universiti Terengganu Malaysia, 21030 Terengganu, Malaysia.
                Article
                10.15171/apb.2019.024
                6664112
                31380246
                f898713c-336a-48bd-93c2-39caf57fede7
                History

                Targeted drugs,Death receptors,Caspases,Cancer,Apoptosis pathways,Apoptosis,c-FLIP

                Comments

                Comment on this article