22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Immunotherapy for hepatocellular carcinoma: Current and future

      review-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hepatocellular carcinoma (HCC) arises on the background of chronic liver disease. Despite the development of effective anti-viral therapeutics HCC is continuing to rise, in part driven by the epidemic of non-alcoholic fatty liver disease. Many patients present with advanced disease out with the criteria for transplant, resection or even locoregional therapy. Currently available therapeutics for HCC are effective in a small minority of individuals. However, there has been a major global interest in immunotherapies for cancer and although HCC has lagged behind other cancers, great opportunities now exist for treating HCC with newer and more sophisticated agents. Whilst checkpoint inhibitors are at the forefront of this revolution, other therapeutics such as inhibitory cytokine blockade, oncolytic viruses, adoptive cellular therapies and vaccines are emerging. Broadly these may be categorized as either boosting existing immune response or stimulating de novo immune response. Although some of these agents have shown promising results as monotherapy in early phase trials it may well be that their future role will be as combination therapy, either in combination with one another or in combination with treatment modalities such as locoregional therapy. Together these agents are likely to generate new and exciting opportunities for treating HCC, which are summarized in this review.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: found

          Comprehensive and Integrative Genomic Characterization of Hepatocellular Carcinoma

          (2017)
          Liver cancer has the second highest worldwide cancer mortality rate and has limited therapeutic options. We analyzed 363 hepatocellular carcinoma (HCC) cases by whole exome sequencing and DNA copy number analyses, and 196 HCC also by DNA methylation, RNA, miRNA, and proteomic expression. DNA sequencing and mutation analysis identified significantly mutated genes including LZTR1 , EEF1A1 , SF3B1 , and SMARCA4 . Significant alterations by mutation or down-regulation by hypermethylation in genes likely to result in HCC metabolic reprogramming ( ALB , APOB , and CPS1 ) were observed. Integrative molecular HCC subtyping incorporating unsupervised clustering of five data platforms identified three subtypes, one of which was associated with poorer prognosis in three HCC cohorts. Integrated analyses enabled development of a p53 target gene expression signature correlating with poor survival. Potential therapeutic targets for which inhibitors exist include WNT signaling, MDM4, MET, VEGFA, MCL1, IDH1, TERT, and immune checkpoint proteins CTLA-4, PD-1, and PD-L1. Multiplex molecular profiling of human hepatocellular carcinoma patients provides insight into subtype characteristics and points toward key pathways to target therapeutically.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The Burden of Primary Liver Cancer and Underlying Etiologies From 1990 to 2015 at the Global, Regional, and National Level : Results From the Global Burden of Disease Study 2015

            Importance Liver cancer is among the leading causes of cancer deaths globally. The most common causes for liver cancer include hepatitis B virus (HBV) and hepatitis C virus (HCV) infection and alcohol use. Objective To report results of the Global Burden of Disease (GBD) 2015 study on primary liver cancer incidence, mortality, and disability-adjusted life-years (DALYs) for 195 countries or territories from 1990 to 2015, and present global, regional, and national estimates on the burden of liver cancer attributable to HBV, HCV, alcohol, and an “other” group that encompasses residual causes. Design, Settings, and Participants Mortality was estimated using vital registration and cancer registry data in an ensemble modeling approach. Single-cause mortality estimates were adjusted for all-cause mortality. Incidence was derived from mortality estimates and the mortality-to-incidence ratio. Through a systematic literature review, data on the proportions of liver cancer due to HBV, HCV, alcohol, and other causes were identified. Years of life lost were calculated by multiplying each death by a standard life expectancy. Prevalence was estimated using mortality-to-incidence ratio as surrogate for survival. Total prevalence was divided into 4 sequelae that were multiplied by disability weights to derive years lived with disability (YLDs). DALYs were the sum of years of life lost and YLDs. Main Outcomes and Measures Liver cancer mortality, incidence, YLDs, years of life lost, DALYs by etiology, age, sex, country, and year. Results There were 854 000 incident cases of liver cancer and 810 000 deaths globally in 2015, contributing to 20 578 000 DALYs. Cases of incident liver cancer increased by 75% between 1990 and 2015, of which 47% can be explained by changing population age structures, 35% by population growth, and −8% to changing age-specific incidence rates. The male-to-female ratio for age-standardized liver cancer mortality was 2.8. Globally, HBV accounted for 265 000 liver cancer deaths (33%), alcohol for 245 000 (30%), HCV for 167 000 (21%), and other causes for 133 000 (16%) deaths, with substantial variation between countries in the underlying etiologies. Conclusions and Relevance Liver cancer is among the leading causes of cancer deaths in many countries. Causes of liver cancer differ widely among populations. Our results show that most cases of liver cancer can be prevented through vaccination, antiviral treatment, safe blood transfusion and injection practices, as well as interventions to reduce excessive alcohol use. In line with the Sustainable Development Goals, the identification and elimination of risk factors for liver cancer will be required to achieve a sustained reduction in liver cancer burden. The GBD study can be used to guide these prevention efforts. This data analysis of the Global Burden of Disease 2015 study on primary liver cancer reports incidence, mortality, and disability-adjusted life-years for 195 countries or territories from 1990 to 2015, and presents global, regional, and national estimates on the burden of liver cancer. Question What is the burden of liver cancer globally, what are the major risk factors for liver cancer across countries, regions, and at the global level and how did these change between 1990 and 2015? Findings There were 854 000 incident liver cancer cases and 810 000 deaths globally in 2015, contributing to 20 578 000 disability-adjusted life-years. Hepatitis B virus infection accounted for 265 000 liver cancer deaths (33%), alcohol for 245 000 (30%), hepatitis C virus infection for 167 000 (21%), and other causes for 133 000 (16%) deaths. Meaning Most cases of liver cancer can be prevented through vaccination, antiviral treatment, safe blood transfusion and injection practices, as well as interventions to reduce excessive alcohol use.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease.

              Activation of naive CD4(+) T-helper cells results in the development of at least two distinct effector populations, Th1 and Th2 cells. Th1 cells produce cytokines (interferon (IFN)-gamma, interleukin (IL)-2, tumour-necrosis factor (TNF)-alpha and lymphotoxin) that are commonly associated with cell-mediated immune responses against intracellular pathogens, delayed-type hypersensitivity reactions, and induction of organ-specific autoimmune diseases. Th2 cells produce cytokines (IL-4, IL-10 and IL-13) that are crucial for control of extracellular helminthic infections and promote atopic and allergic diseases. Although much is known about the functions of these two subsets of T-helper cells, there are few known surface molecules that distinguish between them. We report here the identification and characterization of a transmembrane protein, Tim-3, which contains an immunoglobulin and a mucin-like domain and is expressed on differentiated Th1 cells. In vivo administration of antibody to Tim-3 enhances the clinical and pathological severity of experimental autoimmune encephalomyelitis (EAE), a Th1-dependent autoimmune disease, and increases the number and activation level of macrophages. Tim-3 may have an important role in the induction of autoimmune diseases by regulating macrophage activation and/or function.
                Bookmark

                Author and article information

                Contributors
                Journal
                World J Gastroenterol
                World J. Gastroenterol
                WJG
                World Journal of Gastroenterology
                Baishideng Publishing Group Inc
                1007-9327
                2219-2840
                28 June 2019
                28 June 2019
                : 25
                : 24
                : 2977-2989
                Affiliations
                Department of Hepatology, Southampton General Hospital, University Hospital Southampton, Southampton SO16 6YD, United Kingdom
                Department of Clinical and Experimental Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton SO16 6YD, United Kingdom. s.i.khakoo@ 123456soton.ac.uk
                Author notes

                Author contributions: All authors equally contributed to this paper with conception and design of the study, literature review and analysis, drafting and critical revision and editing, and final approval of the final version.

                Corresponding author: Salim I Khakoo, FRCP (C), MBBS, MD, Professor, Department of Clinical and Experimental Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Mailpoint 811, Level E South Academic Block, Tremona Road, Southampton SO16 6YD, United Kingdom. s.i.khakoo@ 123456soton.ac.uk

                Telephone: +44-23-8077-7222

                Article
                jWJG.v25.i24.pg2977
                10.3748/wjg.v25.i24.2977
                6603808
                729a7e94-6375-429b-9c57-61126b99bb4f
                ©The Author(s) 2019. Published by Baishideng Publishing Group Inc. All rights reserved.

                This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial.

                History
                : 30 March 2019
                : 24 April 2019
                : 18 May 2019
                Categories
                Review

                adoptive cell therapy,cancer vaccine,checkpoint inhibitor,hepatocellular carcinoma,immunotherapy,liver cancer,oncolytic virus

                Comments

                Comment on this article