28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Gut microbiota as the key controllers of “healthy” aging of elderly people

      ,
      Immunity & Ageing
      Springer Science and Business Media LLC

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Extrinsic factors, such as lifestyle and diet, are shown to be essential in the control of human healthy aging, and thus, longevity. They do so by targeting at least in part the gut microbiome, a collection of commensal microorganisms (microbiota), which colonize the intestinal tract starting after birth, and is established by the age of three. The composition and abundance of individual microbiota appears to continue to change until adulthood, presumably reflecting lifestyle and geographic, racial, and individual differences. Although most of these changes appear to be harmless, a major shift in their composition in the gut (dysbiosis) can trigger harmful local and systemic inflammation. Recent reports indicate that dysbiosis is increased in aging and that the gut microbiota of elderly people is enriched in pro-inflammatory commensals at the expense of beneficial microbes. The clinical consequence of this change remains confusing due to contradictory reports and a high degree of variability of human microbiota and methodologies used. Here, we present the authors’ thoughts that underscore dysbiosis as a primary cause of aging-associated morbidities, and thus, premature death of elderly people. We provide evidence that the dysbiosis triggers a chain of pathological and inflammatory events. Examples include alteration of levels of microbiota-affected metabolites, impaired function and integrity of the gastrointestinal tract, and increased gut leakiness. All of these enhance systemic inflammation, which when associated with aging is termed inflammaging, and result in consequent aging-associated pathologies.

          Related collections

          Most cited references119

          • Record: found
          • Abstract: found
          • Article: not found

          Diet rapidly and reproducibly alters the human gut microbiome

          Long-term diet influences the structure and activity of the trillions of microorganisms residing in the human gut 1–5 , but it remains unclear how rapidly and reproducibly the human gut microbiome responds to short-term macronutrient change. Here, we show that the short-term consumption of diets composed entirely of animal or plant products alters microbial community structure and overwhelms inter-individual differences in microbial gene expression. The animal-based diet increased the abundance of bile-tolerant microorganisms (Alistipes, Bilophila, and Bacteroides) and decreased the levels of Firmicutes that metabolize dietary plant polysaccharides (Roseburia, Eubacterium rectale, and Ruminococcus bromii). Microbial activity mirrored differences between herbivorous and carnivorous mammals 2 , reflecting trade-offs between carbohydrate and protein fermentation. Foodborne microbes from both diets transiently colonized the gut, including bacteria, fungi, and even viruses. Finally, increases in the abundance and activity of Bilophila wadsworthia on the animal-based diet support a link between dietary fat, bile acids, and the outgrowth of microorganisms capable of triggering inflammatory bowel disease 6 . In concert, these results demonstrate that the gut microbiome can rapidly respond to altered diet, potentially facilitating the diversity of human dietary lifestyles.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human gut microbiome viewed across age and geography

            Gut microbial communities represent one source of human genetic and metabolic diversity. To examine how gut microbiomes differ between human populations when viewed from the perspective of component microbial lineages, encoded metabolic functions, stage of postnatal development, and environmental exposures, we characterized bacterial species present in fecal samples obtained from 531 individuals representing healthy Amerindians from the Amazonas of Venezuela, residents of rural Malawian communities, and inhabitants of USA metropolitan areas, as well as the gene content of 110 of their microbiomes. This cohort encompassed infants, children, teenagers and adults, parents and offspring, and included mono- and dizygotic twins. Shared features of the functional maturation of the gut microbiome were identified during the first three years of life in all three populations, including age-associated changes in the representation of genes involved in vitamin biosynthesis and metabolism. Pronounced differences in bacterial species assemblages and functional gene repertoires were noted between individuals residing in the USA compared to the other two countries. These distinctive features are evident in early infancy as well as adulthood. In addition, the similarity of fecal microbiomes among family members extends across cultures. These findings underscore the need to consider the microbiome when evaluating human development, nutritional needs, physiological variations, and the impact of Westernization.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis.

              Regulatory T cells (Tregs) that express the transcription factor Foxp3 are critical for regulating intestinal inflammation. Candidate microbe approaches have identified bacterial species and strain-specific molecules that can affect intestinal immune responses, including species that modulate Treg responses. Because neither all humans nor mice harbor the same bacterial strains, we posited that more prevalent factors exist that regulate the number and function of colonic Tregs. We determined that short-chain fatty acids, gut microbiota-derived bacterial fermentation products, regulate the size and function of the colonic Treg pool and protect against colitis in a Ffar2-dependent manner in mice. Our study reveals that a class of abundant microbial metabolites underlies adaptive immune microbiota coadaptation and promotes colonic homeostasis and health.
                Bookmark

                Author and article information

                Contributors
                Journal
                Immunity & Ageing
                Immun Ageing
                Springer Science and Business Media LLC
                1742-4933
                December 2021
                January 05 2021
                December 2021
                : 18
                : 1
                Article
                10.1186/s12979-020-00213-w
                2e9b627a-2584-40b2-8904-203263d895e4
                © 2021

                http://creativecommons.org/licenses/by/4.0/

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article