45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A vaccine strategy that protects against genital herpes by establishing local memory T cells

      ,
      Nature
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The majority of successful existing vaccines rely on neutralizing antibodies, which may not require specific anatomical localization of B cells. However, efficacious vaccines that rely on T cells for protection have been difficult to develop, as robust systemic memory T cell responses do not necessarily correlate with host protection 1 . In peripheral sites, tissue-resident memory T cells provide superior protection compared to circulating memory T cells 2,3 . Here, we describe a simple and non-inflammatory vaccine strategy that enables the establishment of a protective memory T cell pool within peripheral tissue. The female genital tract, which is a portal of entry for sexually transmitted infections (STIs), is an immunologically restrictive tissue that prevents entry of activated T cells in the absence of inflammation or infection 4 . To overcome this obstacle, we explored a vaccine strategy we term “prime and pull” to establish local tissue-resident memory T cells at a site of potential viral exposure. This approach relies on two steps: 1) conventional parenteral vaccination to elicit systemic T cell responses (prime), followed by 2) recruitment of activated T cells via topical chemokine application to the restrictive genital tract (pull), where such T cells establish a long-term niche and mediate protective immunity. Prime and pull protocol reduces the spread of infectious HSV-2 into the sensory neurons and prevents development of clinical disease. These results reveal a promising vaccination strategy against HSV-2, and potentially against other STIs such as HIV-1.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques.

          A very simple, fast, universally applicable and reproducible method to extract high quality megabase genomic DNA from different organisms is described. We applied the same method to extract high quality complex genomic DNA from different tissues (wheat, barley, potato, beans, pear and almond leaves as well as fungi, insects and shrimps' fresh tissue) without any modification. The method does not require expensive and environmentally hazardous reagents and equipment. It can be performed even in low technology laboratories. The amount of tissue required by this method is approximately 50-100 mg. The quantity and the quality of the DNA extracted by this method is high enough to perform hundreds of PCR-based reactions and also to be used in other DNA manipulation techniques such as restriction digestion, Southern blot and cloning.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Different patterns of peripheral migration by memory CD4+ and CD8+ T cells.

            Infections localized to peripheral tissues such as the skin result in the priming of T-cell responses that act to control pathogens. Activated T cells undergo migrational imprinting within the draining lymph nodes, resulting in memory T cells that provide local and systemic protection. Combinations of migrating and resident memory T cells have been implicated in long-term peripheral immunity, especially at the surfaces that form pathogen entry points into the body. However, T-cell immunity consists of separate CD4(+) helper T cells and CD8(+) killer T cells, with distinct effector and memory programming requirements. Whether these subsets also differ in their ability to form a migrating pool involved in peripheral immunosurveillance or a separate resident population responsible for local infection control has not been explored. Here, using mice, we show key differences in the migration and tissue localization of memory CD4(+) and CD8(+) T cells following infection of the skin by herpes simplex virus. On resolution of infection, the skin contained two distinct virus-specific memory subsets; a slow-moving population of sequestered CD8(+) T cells that were resident in the epidermis and confined largely to the original site of infection, and a dynamic population of CD4(+) T cells that trafficked rapidly through the dermis as part of a wider recirculation pattern. Unique homing-molecule expression by recirculating CD4(+) T effector-memory cells mirrored their preferential skin-migratory capacity. Overall, these results identify a complexity in memory T-cell migration, illuminating previously unappreciated differences between the CD4(+) and CD8(+) subsets.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus.

              Effective immunity is dependent on long-surviving memory T cells. Various memory subsets make distinct contributions to immune protection, especially in peripheral infection. It has been suggested that T cells in nonlymphoid tissues are important during local infection, although their relationship with populations in the circulation remains poorly defined. Here we describe a unique memory T cell subset present after acute infection with herpes simplex virus that remained resident in the skin and in latently infected sensory ganglia. These T cells were in disequilibrium with the circulating lymphocyte pool and controlled new infection with this virus. Thus, these cells represent an example of tissue-resident memory T cells that can provide protective immunity at points of pathogen entry.
                Bookmark

                Author and article information

                Journal
                Nature
                Nature
                Springer Science and Business Media LLC
                0028-0836
                1476-4687
                November 2012
                October 17 2012
                November 2012
                : 491
                : 7424
                : 463-467
                Article
                10.1038/nature11522
                745d9266-a9b3-4a4e-99c6-8d5c5c2f947e
                © 2012

                http://www.springer.com/tdm

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article