10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Phonological Working Memory Representations in the Left Inferior Parietal Lobe in the Face of Distraction and Neural Stimulation

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The neural basis of phonological working memory (WM) was investigated through an examination of the effects of irrelevant speech distractors and disruptive neural stimulation from transcranial magnetic stimulation (TMS). Embedded processes models argue that the same regions involved in speech perception are used to support phonological WM whereas buffer models assume that a region separate from speech perception regions is used to support WM. Thus, according to the embedded processes approach but not the buffer approach, irrelevant speech and TMS to the speech perception region should disrupt the decoding of phonological WM representations. According to the buffer account, decoding of WM items should be possible in the buffer region despite distraction and should be disrupted with TMS to this region. Experiment 1 used fMRI and representational similarity analyses (RSA) with a delayed recognition memory paradigm using nonword stimuli. Results showed that decoding of memory items in the speech perception regions (superior temporal gyrus, STG) was possible in the absence of distractors. However, the decoding evidence in the left STG was susceptible to interference from distractors presented during the delay period whereas decoding in the proposed buffer region (supramarginal gyrus, SMG) persisted. Experiment 2 examined the causal roles of the speech processing region and the buffer region in phonological WM performance using TMS. TMS to the SMG during the early delay period caused a disruption in recognition performance for the memory nonwords, whereas stimulations at the STG and an occipital control region did not affect WM performance. Taken together, results from the two experiments are consistent with predictions of a buffer model of phonological WM, pointing to a critical role of the left SMG in maintaining phonological representations.

          Related collections

          Most cited references110

          • Record: found
          • Abstract: found
          • Article: not found

          Distributed and overlapping representations of faces and objects in ventral temporal cortex.

          The functional architecture of the object vision pathway in the human brain was investigated using functional magnetic resonance imaging to measure patterns of response in ventral temporal cortex while subjects viewed faces, cats, five categories of man-made objects, and nonsense pictures. A distinct pattern of response was found for each stimulus category. The distinctiveness of the response to a given category was not due simply to the regions that responded maximally to that category, because the category being viewed also could be identified on the basis of the pattern of response when those regions were excluded from the analysis. Patterns of response that discriminated among all categories were found even within cortical regions that responded maximally to only one category. These results indicate that the representations of faces and objects in ventral temporal cortex are widely distributed and overlapping.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            AFNI: Software for Analysis and Visualization of Functional Magnetic Resonance Neuroimages

            A package of computer programs for analysis and visualization of three-dimensional human brain functional magnetic resonance imaging (FMRI) results is described. The software can color overlay neural activation maps onto higher resolution anatomical scans. Slices in each cardinal plane can be viewed simultaneously. Manual placement of markers on anatomical landmarks allows transformation of anatomical and functional scans into stereotaxic (Talairach-Tournoux) coordinates. The techniques for automatically generating transformed functional data sets from manually labeled anatomical data sets are described. Facilities are provided for several types of statistical analyses of multiple 3D functional data sets. The programs are written in ANSI C and Motif 1.2 to run on Unix workstations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Representational Similarity Analysis – Connecting the Branches of Systems Neuroscience

              A fundamental challenge for systems neuroscience is to quantitatively relate its three major branches of research: brain-activity measurement, behavioral measurement, and computational modeling. Using measured brain-activity patterns to evaluate computational network models is complicated by the need to define the correspondency between the units of the model and the channels of the brain-activity data, e.g., single-cell recordings or voxels from functional magnetic resonance imaging (fMRI). Similar correspondency problems complicate relating activity patterns between different modalities of brain-activity measurement (e.g., fMRI and invasive or scalp electrophysiology), and between subjects and species. In order to bridge these divides, we suggest abstracting from the activity patterns themselves and computing representational dissimilarity matrices (RDMs), which characterize the information carried by a given representation in a brain or model. Building on a rich psychological and mathematical literature on similarity analysis, we propose a new experimental and data-analytical framework called representational similarity analysis (RSA), in which multi-channel measures of neural activity are quantitatively related to each other and to computational theory and behavior by comparing RDMs. We demonstrate RSA by relating representations of visual objects as measured with fMRI in early visual cortex and the fusiform face area to computational models spanning a wide range of complexities. The RDMs are simultaneously related via second-level application of multidimensional scaling and tested using randomization and bootstrap techniques. We discuss the broad potential of RSA, including novel approaches to experimental design, and argue that these ideas, which have deep roots in psychology and neuroscience, will allow the integrated quantitative analysis of data from all three branches, thus contributing to a more unified systems neuroscience.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Hum Neurosci
                Front Hum Neurosci
                Front. Hum. Neurosci.
                Frontiers in Human Neuroscience
                Frontiers Media S.A.
                1662-5161
                23 June 2022
                2022
                : 16
                : 890483
                Affiliations
                [1] 1Department of Psychological Sciences, Rice University , Houston, TX, United States
                [2] 2Department of Psychology, Vanderbilt University , Nashville, TN, United States
                Author notes

                Edited by: Carol Seger, Colorado State University, United States

                Reviewed by: Rongjuan Zhu, Shaanxi Normal University, China; Benjamin Kowialiewski, University of Zurich, Switzerland; Steven Christian Schwering, University of Wisconsin-Madison, United States

                *Correspondence: Qiuhai Yue yueqiuhai@ 123456gmail.com Randi C. Martin rmartin@ 123456rice.edu

                Specialty section: This article was submitted to Cognitive Neuroscience, a section of the journal Frontiers in Human Neuroscience

                Article
                10.3389/fnhum.2022.890483
                9259857
                e9484f28-7b5a-4426-984a-c5d41ec63d09
                Copyright © 2022 Yue and Martin.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 06 March 2022
                : 30 May 2022
                Page count
                Figures: 5, Tables: 1, Equations: 0, References: 111, Pages: 18, Words: 17269
                Categories
                Human Neuroscience
                Original Research

                Neurosciences
                phonological working memory,supramarginal gyrus,buffer,functional magnetic resonance imaging,representational similarity analysis,distractor,transcranial magnetic stimulation

                Comments

                Comment on this article