28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Targeting cancer metabolism in the era of precision oncology

      review-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          One hundred years have passed since Warburg discovered alterations in cancer metabolism, more than 70 years since Sidney Farber introduced anti-folates that transformed the treatment of childhood leukaemia, and 20 years since metabolism was linked to oncogenes. However, progress in targeting cancer metabolism therapeutically in the past decade has been limited. Only a few metabolism-based drugs for cancer have been successfully developed, some of which are in — or en route to — clinical trials. Strategies for targeting the intrinsic metabolism of cancer cells often did not account for the metabolism of non-cancer stromal and immune cells, which have pivotal roles in tumour progression and maintenance. By considering immune cell metabolism and the clinical manifestations of inborn errors of metabolism, it may be possible to isolate undesirable off-tumour, on-target effects of metabolic drugs during their development. Hence, the conceptual framework for drug design must consider the metabolic vulnerabilities of non-cancer cells in the tumour immune microenvironment, as well as those of cancer cells. In this Review, we cover the recent developments, notable milestones and setbacks in targeting cancer metabolism, and discuss the way forward for the field.

          Abstract

          Despite the link between metabolism and oncogenes, very few metabolism-based drugs for cancer have been successfully developed. This Review covers the setbacks and recent developments in targeting cancer metabolism, and discusses the path forward for the field.

          Related collections

          Most cited references250

          • Record: found
          • Abstract: found
          • Article: not found

          The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data.

          The cBio Cancer Genomics Portal (http://cbioportal.org) is an open-access resource for interactive exploration of multidimensional cancer genomics data sets, currently providing access to data from more than 5,000 tumor samples from 20 cancer studies. The cBio Cancer Genomics Portal significantly lowers the barriers between complex genomic data and cancer researchers who want rapid, intuitive, and high-quality access to molecular profiles and clinical attributes from large-scale cancer genomics projects and empowers researchers to translate these rich data sets into biologic insights and clinical applications. © 2012 AACR.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Understanding the Warburg effect: the metabolic requirements of cell proliferation.

            In contrast to normal differentiated cells, which rely primarily on mitochondrial oxidative phosphorylation to generate the energy needed for cellular processes, most cancer cells instead rely on aerobic glycolysis, a phenomenon termed "the Warburg effect." Aerobic glycolysis is an inefficient way to generate adenosine 5'-triphosphate (ATP), however, and the advantage it confers to cancer cells has been unclear. Here we propose that the metabolism of cancer cells, and indeed all proliferating cells, is adapted to facilitate the uptake and incorporation of nutrients into the biomass (e.g., nucleotides, amino acids, and lipids) needed to produce a new cell. Supporting this idea are recent studies showing that (i) several signaling pathways implicated in cell proliferation also regulate metabolic pathways that incorporate nutrients into biomass; and that (ii) certain cancer-associated mutations enable cancer cells to acquire and metabolize nutrients in a manner conducive to proliferation rather than efficient ATP production. A better understanding of the mechanistic links between cellular metabolism and growth control may ultimately lead to better treatments for human cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Understanding the tumor immune microenvironment (TIME) for effective therapy

              The clinical successes in immunotherapy have been both astounding and at the same time unsatisfactory. Countless patients with varied tumor types have seen pronounced clinical response with immunotherapeutic intervention; however, many more patients have experienced minimal or no clinical benefit when provided the same treatment. As technology has advanced, so has the understanding of the complexity and diversity of the immune context of the tumor microenvironment and its influence on response to therapy. It has been possible to identify different subclasses of immune environment that have an influence on tumor initiation and response and therapy; by parsing the unique classes and subclasses of tumor immune microenvironment (TIME) that exist within a patient’s tumor, the ability to predict and guide immunotherapeutic responsiveness will improve, and new therapeutic targets will be revealed.
                Bookmark

                Author and article information

                Contributors
                cdang@lcr.org
                Journal
                Nat Rev Drug Discov
                Nat Rev Drug Discov
                Nature Reviews. Drug Discovery
                Nature Publishing Group UK (London )
                1474-1776
                1474-1784
                3 December 2021
                : 1-22
                Affiliations
                [1 ]Barer Institute 520 Broad Street, Newark, NJ USA
                [2 ]GRID grid.251075.4, ISNI 0000 0001 1956 6678, The Wistar Institute Philadelphia, ; Philadelphia, PA USA
                [3 ]GRID grid.1052.6, ISNI 0000000097371625, Ludwig Institute for Cancer Research New York, ; New York, NY USA
                Author information
                http://orcid.org/0000-0003-4197-8227
                http://orcid.org/0000-0002-2184-5980
                http://orcid.org/0000-0002-4031-2522
                Article
                339
                10.1038/s41573-021-00339-6
                8641543
                c0b3af62-ecda-491b-9df8-223dd9537ff0
                © Springer Nature Limited 2021

                This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.

                History
                : 8 October 2021
                Categories
                Review Article

                cancer metabolism,target identification
                cancer metabolism, target identification

                Comments

                Comment on this article