There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.
Abstract
The dominant paradigm of “one gene, one target, one disease” has influenced many aspects of drug discovery strategy. However, in recent years, it has been appreciated that many effective drugs act on multiple targets rather than a single one. As an integrated multidisciplinary concept, network pharmacology, which is based on system biology and polypharmacology, affords a novel network mode of “multiple targets, multiple effects, complex diseases” and replaces the “magic bullets” by “magic shotguns.” Chinese herbal medicine (CHM) has been recognized as one of the most important strategies in complementary and alternative medicine. Though CHM has been practiced for a very long time, its effectiveness and beneficial contribution to public health has not been fully recognized. Also, the knowledge on the mechanisms of CHM formulas is scarce. In the present review, the concept and significance of network pharmacology is briefly introduced. The application and potential role of network pharmacology in the CHM fields is also discussed, such as data collection, target prediction, network visualization, multicomponent interaction, and network toxicology. Furthermore, the developing tendency of network pharmacology is also summarized, and its role in CHM research is discussed.
Many complex systems, such as communication networks, display a surprising degree of robustness: while key components regularly malfunction, local failures rarely lead to the loss of the global information-carrying ability of the network. The stability of these complex systems is often attributed to the redundant wiring of the functional web defined by the systems' components. In this paper we demonstrate that error tolerance is not shared by all redundant systems, but it is displayed only by a class of inhomogeneously wired networks, called scale-free networks. We find that scale-free networks, describing a number of systems, such as the World Wide Web, Internet, social networks or a cell, display an unexpected degree of robustness, the ability of their nodes to communicate being unaffected by even unrealistically high failure rates. However, error tolerance comes at a high price: these networks are extremely vulnerable to attacks, i.e. to the selection and removal of a few nodes that play the most important role in assuring the network's connectivity.
Given the functional interdependencies between the molecular components in a human cell, a disease is rarely a consequence of an abnormality in a single gene, but reflects the perturbations of the complex intracellular and intercellular network that links tissue and organ systems. The emerging tools of network medicine offer a platform to explore systematically not only the molecular complexity of a particular disease, leading to the identification of disease modules and pathways, but also the molecular relationships among apparently distinct (patho)phenotypes. Advances in this direction are essential for identifying new disease genes, for uncovering the biological significance of disease-associated mutations identified by genome-wide association studies and full-genome sequencing, and for identifying drug targets and biomarkers for complex diseases.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.