3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Identification of hepatocellular carcinoma and paracancerous tissue based on the peak area in FTIR microspectroscopy

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study demonstrates that nonlinear SVM model combined with the features of peak area performs well in the identification of HCC foci and paracancerous tissue, and also proves that the performance is better than full spectrum-based feature.

          Abstract

          Hepatocellular carcinoma (HCC) is one of the most common primary hepatic malignancies across the world. The annual incidence and death rates have increased at the highest rate of all cancers in recent years. Surgical resection is a potentially curative option for solitary HCC or unilobar disease without evidence of metastases or vascular invasion. This study focuses on the molecular differences between the HCC foci and paracancerous tissues and provides some valuable biomarkers based on the vibrational spectrum. Fourier transform infrared (FTIR) spectroscopy is a non-invasive and qualitative and semi-quantitative analysis technique that has been widely applied for the identification of macromolecular changes in biological tissues. In this study, the FTIR spectra of the HCC foci and the paracancerous tissues were recorded separately, and ten areas under the absorption peaks of all the specimens were calculated. The result demonstrates that the areas of protein-related absorption peaks at 1398 cm −1, 1548 cm −1, 1654 cm −1 and 3070 cm −1 may be the key indicators of the two different regions. After coupling with the classification algorithms of k-nearest neighbor (KNN), random forest (RF) and support vector machine (SVM), it was found that SVM with an RBF kernel performed best with the AUC (area under the ROC curve) reaching 0.997, and the performance was better than the feature based on the full spectrum. This reveals that the peak area-based FTIR spectra combined with the SVM algorithm may be a promising tool in identifying the HCC foci and the paracancerous tissues.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: found

          Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States.

          Cancer incidence and deaths in the United States were projected for the most common cancer types for the years 2020 and 2030 based on changing demographics and the average annual percentage changes in incidence and death rates. Breast, prostate, and lung cancers will remain the top cancer diagnoses throughout this time, but thyroid cancer will replace colorectal cancer as the fourth leading cancer diagnosis by 2030, and melanoma and uterine cancer will become the fifth and sixth most common cancers, respectively. Lung cancer is projected to remain the top cancer killer throughout this time period. However, pancreas and liver cancers are projected to surpass breast, prostate, and colorectal cancers to become the second and third leading causes of cancer-related death by 2030, respectively. Advances in screening, prevention, and treatment can change cancer incidence and/or death rates, but it will require a concerted effort by the research and healthcare communities now to effect a substantial change for the future. ©2014 American Association for Cancer Research.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Plasma Hsp90 levels in patients with systemic sclerosis and relation to lung and skin involvement: a cross-sectional and longitudinal study

            Our previous study demonstrated increased expression of Heat shock protein (Hsp) 90 in the skin of patients with systemic sclerosis (SSc). We aimed to evaluate plasma Hsp90 in SSc and characterize its association with SSc-related features. Ninety-two SSc patients and 92 age-/sex-matched healthy controls were recruited for the cross-sectional analysis. The longitudinal analysis comprised 30 patients with SSc associated interstitial lung disease (ILD) routinely treated with cyclophosphamide. Hsp90 was increased in SSc compared to healthy controls. Hsp90 correlated positively with C-reactive protein and negatively with pulmonary function tests: forced vital capacity and diffusing capacity for carbon monoxide (DLCO). In patients with diffuse cutaneous (dc) SSc, Hsp90 positively correlated with the modified Rodnan skin score. In SSc-ILD patients treated with cyclophosphamide, no differences in Hsp90 were found between baseline and after 1, 6, or 12 months of therapy. However, baseline Hsp90 predicts the 12-month change in DLCO. This study shows that Hsp90 plasma levels are increased in SSc patients compared to age-/sex-matched healthy controls. Elevated Hsp90 in SSc is associated with increased inflammatory activity, worse lung functions, and in dcSSc, with the extent of skin involvement. Baseline plasma Hsp90 predicts the 12-month change in DLCO in SSc-ILD patients treated with cyclophosphamide.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Liver Cancer Cell of Origin, Molecular Class, and Effects on Patient Prognosis.

              Primary liver cancer is the second leading cause of cancer-related death worldwide and therefore a major public health challenge. We review hypotheses of the cell of origin of liver tumorigenesis and clarify the classes of liver cancer based on molecular features and how they affect patient prognosis. Primary liver cancer comprises hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (iCCA), and other rare tumors, notably fibrolamellar carcinoma and hepatoblastoma. The molecular and clinical features of HCC versus iCCA are distinct, but these conditions have overlapping risk factors and pathways of oncogenesis. A better understanding of the cell types originating liver cancer can aid in exploring molecular mechanisms of carcinogenesis and therapeutic options. Molecular studies have identified adult hepatocytes as the cell of origin. These cells have been proposed to transform directly into HCC cells (via a sequence of genetic alterations), to dedifferentiate into hepatocyte precursor cells (which then become HCC cells that express progenitor cell markers), or to transdifferentiate into biliary-like cells (which give rise to iCCA). Alternatively, progenitor cells also give rise to HCCs and iCCAs with markers of progenitor cells. Advances in genome profiling and next-generation sequencing have led to the classification of HCCs based on molecular features and assigned them to categories such as proliferation-progenitor, proliferation-transforming growth factor β, and Wnt-catenin β1. iCCAs have been assigned to categories of proliferation and inflammation. Overall, proliferation subclasses are associated with a more aggressive phenotype and poor outcome of patients, although more specific signatures have refined our prognostic abilities. Analyses of genetic alterations have identified those that might be targeted therapeutically, such as fusions in the FGFR2 gene and mutations in genes encoding isocitrate dehydrogenases (in approximately 60% of iCCAs) or amplifications at 11q13 and 6p21 (in approximately 15% of HCCs). Further studies of these alterations are needed before they can be used as biomarkers in clinical decision making.
                Bookmark

                Author and article information

                Contributors
                Journal
                AMNECT
                Analytical Methods
                Anal. Methods
                Royal Society of Chemistry (RSC)
                1759-9660
                1759-9679
                August 18 2022
                2022
                : 14
                : 32
                : 3115-3124
                Affiliations
                [1 ]Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China
                [2 ]National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, China
                Article
                10.1039/D2AY00640E
                4d63ce08-e3da-4bea-8c57-3d0edaedfbd9
                © 2022

                http://rsc.li/journals-terms-of-use

                History

                Comments

                Comment on this article