28
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Multi-Scale Estimation of Land Use Efficiency (SDG 11.3.1) across 25 Years Using Global Open and Free Data

      , , , , , ,
      Sustainability
      MDPI AG

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sustainable Development Goal (SDG) 11 aspires to “Make cities and human settlements inclusive, safe, resilient and sustainable”, and the introduction of an explicit urban goal testifies to the importance of urbanisation. The understanding of the process of urbanisation and the capacity to monitor the SDGs require a wealth of open, reliable, locally yet globally comparable data, and a fully-fledged data revolution. In this framework, the European Commission–Joint Research Centre has developed a suite of (open and free) data and tools named Global Human Settlement Layer (GHSL) which maps the human presence on Earth (built-up areas, population distribution and settlement typologies) between 1975 and 2015. The GHSL supplies information on the progressive expansion of built-up areas on Earth and population dynamics in human settlements, with both sources of information serving as baseline data to quantify land use efficiency (LUE), listed as a Tier II indicator for SDG 11 (11.3.1). In this paper, we present the profile of the LUE across several territorial scales between 1990 and 2015, highlighting diverse development trajectories and the land take efficiency of different human settlements. Our results show that (i) the GHSL framework allows us to estimate LUE for the entire planet at several territorial scales, opening the opportunity of lifting the LUE indicator from its Tier II classification; (ii) the current formulation of the LUE is substantially subject to path dependency; and (iii) it requires additional spatially-explicit metrics for its interpretation. We propose the Achieved Population Density in Expansion Areas and the Marginal Land Consumption per New Inhabitant metrics for this purpose. The study is planetary and multi-temporal in coverage, demonstrating the value of well-designed, open and free, fine-scale geospatial information on human settlements in supporting policy and monitoring progress made towards meeting the SDGs.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: found

          Planetary boundaries: Guiding human development on a changing planet

          The planetary boundaries framework defines a safe operating space for humanity based on the intrinsic biophysical processes that regulate the stability of the Earth system. Here, we revise and update the planetary boundary framework, with a focus on the underpinning biophysical science, based on targeted input from expert research communities and on more general scientific advances over the past 5 years. Several of the boundaries now have a two-tier approach, reflecting the importance of cross-scale interactions and the regional-level heterogeneity of the processes that underpin the boundaries. Two core boundaries—climate change and biosphere integrity—have been identified, each of which has the potential on its own to drive the Earth system into a new state should they be substantially and persistently transgressed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Global consequences of land use.

            Land use has generally been considered a local environmental issue, but it is becoming a force of global importance. Worldwide changes to forests, farmlands, waterways, and air are being driven by the need to provide food, fiber, water, and shelter to more than six billion people. Global croplands, pastures, plantations, and urban areas have expanded in recent decades, accompanied by large increases in energy, water, and fertilizer consumption, along with considerable losses of biodiversity. Such changes in land use have enabled humans to appropriate an increasing share of the planet's resources, but they also potentially undermine the capacity of ecosystems to sustain food production, maintain freshwater and forest resources, regulate climate and air quality, and ameliorate infectious diseases. We face the challenge of managing trade-offs between immediate human needs and maintaining the capacity of the biosphere to provide goods and services in the long term.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Global land use change, economic globalization, and the looming land scarcity.

              A central challenge for sustainability is how to preserve forest ecosystems and the services that they provide us while enhancing food production. This challenge for developing countries confronts the force of economic globalization, which seeks cropland that is shrinking in availability and triggers deforestation. Four mechanisms-the displacement, rebound, cascade, and remittance effects-that are amplified by economic globalization accelerate land conversion. A few developing countries have managed a land use transition over the recent decades that simultaneously increased their forest cover and agricultural production. These countries have relied on various mixes of agricultural intensification, land use zoning, forest protection, increased reliance on imported food and wood products, the creation of off-farm jobs, foreign capital investments, and remittances. Sound policies and innovations can therefore reconcile forest preservation with food production. Globalization can be harnessed to increase land use efficiency rather than leading to uncontrolled land use expansion. To do so, land systems should be understood and modeled as open systems with large flows of goods, people, and capital that connect local land use with global-scale factors.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                SUSTDE
                Sustainability
                Sustainability
                MDPI AG
                2071-1050
                October 2019
                October 14 2019
                : 11
                : 20
                : 5674
                Article
                10.3390/su11205674
                1000dee6-1089-486f-b506-0658aa2852e9
                © 2019

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article