17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Microbial diversity of thermophiles with biomass deconstruction potential in a foliage‐rich hot spring

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The ability of thermophilic microorganisms and their enzymes to decompose biomass have attracted attention due to their quick reaction time, thermostability, and decreased risk of contamination. Exploitation of efficient thermostable glycoside hydrolases ( GHs) could accelerate the industrialization of biofuels and biochemicals. However, the full spectrum of thermophiles and their enzymes that are important for biomass degradation at high temperatures have not yet been thoroughly studied. We examined a Malaysian Y‐shaped Sungai Klah hot spring located within a wooded area. The fallen foliage that formed a thick layer of biomass bed under the heated water of the Y‐shaped Sungai Klah hot spring was an ideal environment for the discovery and analysis of microbial biomass decay communities. We sequenced the hypervariable regions of bacterial and archaeal 16S rRNA genes using total community DNA extracted from the hot spring. Data suggested that 25 phyla, 58 classes, 110 orders, 171 families, and 328 genera inhabited this hot spring. Among the detected genera, members of Acidimicrobium, Aeropyrum, Caldilinea, Caldisphaera, Chloracidobacterium, Chloroflexus, Desulfurobacterium, Fervidobacterium, Geobacillus, Meiothermus, Melioribacter, Methanothermococcus, Methanotorris, Roseiflexus, Thermoanaerobacter, Thermoanaerobacterium, Thermoanaerobaculum, and Thermosipho were the main thermophiles containing various GHs that play an important role in cellulose and hemicellulose breakdown. Collectively, the results suggest that the microbial community in this hot spring represents a good source for isolating efficient biomass degrading thermophiles and thermozymes.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes

          Background Since its inception, the carbohydrate-active enzymes database (CAZy; http://www.cazy.org) has described the families of enzymes that cleave or build complex carbohydrates, namely the glycoside hydrolases (GH), the polysaccharide lyases (PL), the carbohydrate esterases (CE), the glycosyltransferases (GT) and their appended non-catalytic carbohydrate-binding modules (CBM). The recent discovery that members of families CBM33 and family GH61 are in fact lytic polysaccharide monooxygenases (LPMO), demands a reclassification of these families into a suitable category. Results Because lignin is invariably found together with polysaccharides in the plant cell wall and because lignin fragments are likely to act in concert with (LPMO), we have decided to join the families of lignin degradation enzymes to the LPMO families and launch a new CAZy class that we name “Auxiliary Activities” in order to accommodate a range of enzyme mechanisms and substrates related to lignocellulose conversion. Comparative analyses of these auxiliary activities in 41 fungal genomes reveal a pertinent division of several fungal groups and subgroups combining their phylogenetic origin and their nutritional mode (white vs. brown rot). Conclusions The new class introduced in the CAZy database extends the traditional CAZy families, and provides a better coverage of the full extent of the lignocellulose breakdown machinery.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Humboldt's spa: microbial diversity is controlled by temperature in geothermal environments.

            Over 200 years ago Alexander von Humboldt (1808) observed that plant and animal diversity peaks at tropical latitudes and decreases toward the poles, a trend he attributed to more favorable temperatures in the tropics. Studies to date suggest that this temperature-diversity gradient is weak or nonexistent for Bacteria and Archaea. To test the impacts of temperature as well as pH on bacterial and archaeal diversity, we performed pyrotag sequencing of 16S rRNA genes retrieved from 165 soil, sediment and biomat samples of 36 geothermal areas in Canada and New Zealand, covering a temperature range of 7.5-99 °C and a pH range of 1.8-9.0. This represents the widest ranges of temperature and pH yet examined in a single microbial diversity study. Species richness and diversity indices were strongly correlated to temperature, with R(2) values up to 0.62 for neutral-alkaline springs. The distributions were unimodal, with peak diversity at 24 °C and decreasing diversity at higher and lower temperature extremes. There was also a significant pH effect on diversity; however, in contrast to previous studies of soil microbial diversity, pH explained less of the variability (13-20%) than temperature in the geothermal samples. No correlation was observed between diversity values and latitude from the equator, and we therefore infer a direct temperature effect in our data set. These results demonstrate that temperature exerts a strong control on microbial diversity when considered over most of the temperature range within which life is possible.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Bacterial diversity at different stages of the composting process

              Background Composting is an aerobic microbiological process that is facilitated by bacteria and fungi. Composting is also a method to produce fertilizer or soil conditioner. Tightened EU legislation now requires treatment of the continuously growing quantities of organic municipal waste before final disposal. However, some full-scale composting plants experience difficulties with the efficiency of biowaste degradation and with the emission of noxious odours. In this study we examine the bacterial species richness and community structure of an optimally working pilot-scale compost plant, as well as a full-scale composting plant experiencing typical problems. Bacterial species composition was determined by isolating total DNA followed by amplifying and sequencing the gene encoding the 16S ribosomal RNA. Results Over 1500 almost full-length 16S rRNA gene sequences were analysed and of these, over 500 were present only as singletons. Most of the sequences observed in either one or both of the composting processes studied here were similar to the bacterial species reported earlier in composts, including bacteria from the phyla Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria and Deinococcus-Thermus. In addition, a number of previously undetected bacterial phylotypes were observed. Statistical calculations estimated a total bacterial diversity of over 2000 different phylotypes in the studied composts. Conclusions Interestingly, locally enriched or evolved bacterial variants of familiar compost species were observed in both composts. A detailed comparison of the bacterial diversity revealed a large difference in composts at the species and strain level from the different composting plants. However, at the genus level, the difference was much smaller and illustrated a delay of the composting process in the full-scale, sub-optimally performing plants.
                Bookmark

                Author and article information

                Contributors
                kokgan@um.edu.my
                Journal
                Microbiologyopen
                Microbiologyopen
                10.1002/(ISSN)2045-8827
                MBO3
                MicrobiologyOpen
                John Wiley and Sons Inc. (Hoboken )
                2045-8827
                30 March 2018
                December 2018
                : 7
                : 6 ( doiID: 10.1002/mbo3.2018.7.issue-6 )
                : e00615
                Affiliations
                [ 1 ] ISB (Genetics) Faculty of Science University of Malaysia Kuala Lumpur Malaysia
                [ 2 ] Faculty of Biosciences and Medical Engineering Universiti Teknologi Malaysia Skudai Johor Malaysia
                [ 3 ] Jiangsu University Zhenjiang China
                Author notes
                [*] [* ] Correspondence

                Kok‐Gan Chan, International Genome Centre, Jiangsu University, Zhenjiang, China.

                Email: kokgan@ 123456um.edu.my

                Author information
                http://orcid.org/0000-0003-0851-907X
                http://orcid.org/0000-0002-2839-8722
                Article
                MBO3615
                10.1002/mbo3.615
                6291792
                29602271
                dac18dba-da75-49e5-81a9-8628fb457a48
                © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 09 December 2017
                : 29 January 2018
                : 12 February 2018
                Page count
                Figures: 2, Tables: 3, Pages: 13, Words: 9413
                Funding
                Funded by: Postgraduate Research Fund grant
                Award ID: PG124‐2016A
                Funded by: University of Malaya
                Award ID: GA001‐2016
                Award ID: GA002‐2016
                Funded by: Universiti Teknologi Malaysia GUP
                Award ID: 09H98
                Award ID: 16H89
                Award ID: 4B297
                Funded by: JBK
                Funded by: NRE
                Categories
                Original Research
                Original Articles
                Custom metadata
                2.0
                mbo3615
                December 2018
                Converter:WILEY_ML3GV2_TO_NLMPMC version:version=5.5.4 mode:remove_FC converted:13.12.2018

                Microbiology & Virology
                biofilm,biofuel,biomass degradation,cellulase,hot spring,thermophile
                Microbiology & Virology
                biofilm, biofuel, biomass degradation, cellulase, hot spring, thermophile

                Comments

                Comment on this article