8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Alleviation of Oxidative Stress in Dental Pulp Cells Following 4-Hexylresorcinol Administration in a Rat Model

      , , ,
      Applied Sciences
      MDPI AG

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Damaged dental pulp undergoes oxidative stress and 4-hexylresorcinol (4HR) is a well-known antioxidant. In this study, we aimed to evaluate the therapeutic effects of a 4HR ointment on damaged dental pulp. Pulp cells from rat mandibular incisor were cultured and treated with 4HR or resveratrol (1–100 μM). These treatments (10–100 μM) exerted a protective effect during subsequent hydrogen peroxide treatments. The total antioxidant capacity and glutathione peroxidase activity were significantly increased following 4HR or resveratrol treatment (p < 0.05), while the expression levels of TNF-α and IL1β were decreased following the exposure to 4HR pre-treatment in an in vitro model. Additionally, the application of 4HR ointment in an exposed dental pulp model significantly reduced the expression of TNF-α and IL1β (p < 0.05). Conclusively, 4HR exerted protective effects against oxidative stress in dental pulp tissues through downregulating TNF-α and IL1β.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: not found
          • Article: not found
          Is Open Access

          First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Redox regulation of the immune response.

            Reactive oxygen and nitrogen species (ROS-RNS) and other redox active molecules fulfill key functions in immunity. Beside the initiation of cytocidal reactions within the pathogen defense strategy, redox reactions trigger and shape the immune response and are further involved in termination and initialization of cellular restorative processes. Regulatory mechanisms provided by redox-activated signaling events guarantee the correct spatial and temporal proceeding of immunological processes, and continued imbalances in redox homeostasis lead to crucial failures of control mechanisms, thus promoting the development of pathological conditions. Interferon-gamma is the most potent inducer of ROS-RNS formation in target cells like macrophages. Immune-regulatory pathways such as tryptophan breakdown via indoleamine 2,3-dioxygenase and neopterin production by GTP-cyclohydrolase-I are initiated during T helper cell type 1 (Th1-type) immune response concomitant to the production of ROS-RNS by immunocompetent cells. Therefore, increased neopterin production and tryptophan breakdown is representative of an activated cellular immune system and can be used for the in vivo and in vitro monitoring of oxidative stress. In parallel, the activation of the redox-sensitive transcription factor nuclear factor-kappa B is a central element in immunity leading to cell type and stimulus-specific expression of responsive genes. Furthermore, T cell activation and proliferation are strongly dependent on the redox potential of the extracellular microenvironment. T cell commitment to Th1, Th2, regulatory T cell, and other phenotypes appears to crucially depend on the activation of redox-sensitive signaling cascades, where oxidative conditions support Th1 development while 'antioxidative' stress leads to a shift to allergic Th2-type immune responses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Inflammation and regeneration in the dentin-pulp complex: a double-edged sword.

              Dental tissue infection and disease result in acute and chronic activation of the innate immune response, which is mediated by molecular and cellular signaling. Different cell types within the dentin-pulp complex are able to detect invading bacteria at all stages of the infection. Indeed, at relatively early disease stages, odontoblasts will respond to bacterial components, and as the disease progresses, core pulpal cells including fibroblasts, stems cells, endothelial cells, and immune cells will become involved. Pattern recognition receptors, such as Toll-like receptors expressed on these cell types, are responsible for detecting bacterial components, and their ligand binding leads to the activation of the nuclear factor-kappa B and p38 mitogen-activated protein (MAP) kinase intracellular signaling cascades. Subsequent nuclear translocation of the transcription factor subunits from these pathways will lead to proinflammatory mediator expression, including increases in cytokines and chemokines, which trigger host cellular defense mechanisms. The complex molecular signaling will result in the recruitment of immune system cells targeted at combating the invading microbes; however, the trafficking and antibacterial activity of these cells can lead to collateral tissue damage. Recent evidence suggests that if inflammation is resolved relatively low levels of proinflammatory mediators may promote tissue repair, whereas if chronic inflammation ensues repair mechanisms become inhibited. Thus, the effects of mediators are temporal context dependent. Although containment and removal of the infection are keys to enable dental tissue repair, it is feasible that the development of anti-inflammatory and immunomodulatory approaches, based on molecular, epigenetic, and photobiomodulatory technologies, may also be beneficial for future endodontic treatments.
                Bookmark

                Author and article information

                Contributors
                Journal
                ASPCC7
                Applied Sciences
                Applied Sciences
                MDPI AG
                2076-3417
                April 2021
                April 18 2021
                : 11
                : 8
                : 3637
                Article
                10.3390/app11083637
                bb8b7c86-22da-49c9-b62d-9e55b9446c99
                © 2021

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article